
7 Introduction to differential calculus

Surfi ng and snowboarding are among the many sports that use a fl at board in contact with a curved surface. 
Th e skill lies in  how the surfer or snowboarder manipulates the board against the curve to eff ect changes in 
velocity and acceleration.

Velocity and acceleration are variables that are described in terms of the rate of change of one physical quantity 
in relation to another; velocity is the rate of change of displacement with respect to time, and acceleration is the 
rate of change of velocity with respect to time.

Calculus is the mathematics of change — the study of quantities that do not stay the same and whose rate of 
change is important in a particular context. It is used in fi elds as varied as physics and fi nance, architecture and 
engineering, the setting of credit card payments and the science behind computer games.

Th e development of calculus is one of the major achievements of mathematics. It stimulated the fl owering of 
mathematics and science that sparked the industrial revolution and led to the growth of the technology that we 
know today.

Prior learning topics
It will be easier to study this topic if you have completed:

 Chapter 2
 Chapter 14
 Topic 6 (Chapters 17–19)
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In the seventeenth century, two historical fi gures approached the 
theory of diff erential calculus from two very diff erent directions. Th e 
English scientist Sir Isaac Newton viewed diff erential calculus in terms 
of physics, as the rate of change of a quantity over time. Th e German 
mathematician Gottfried Leibniz viewed diff erential calculus in terms 
of geometry, as the way in which the gradient of a curve changes 
over distance.

Newton developed his ideas before Leibniz, but Leibniz published his 
results earlier; the two men had a long feud over plagiarism. Today, 
both Newton and Leibniz are credited with the modern development 
of calculus, and it is generally accepted that they worked independently 
from diff erent directions and that there was no evidence of plagiarism.

 Isaac Newton (1642–1727) 
was an English scientist and 
mathematician, who worked 

in Cambridge and became President 
of the Royal Society. He made 
infl uential contributions to optics 
and mechanics, and his work on the 
paths of planets led to his 
formulation of calculus. He also 
pursued many other interests, 
ranging from alchemy to the study of 
religion. His fi nal post was as Master 
of the Royal Mint in London, where he introduced the idea 
of a milled edge to coins.

 Gottfried Leibniz (1646–1716) 
was born in Germany. He 
worked as a lawyer and 

librarian, but is described as a 
polymath — a universal genius who 
contributed ideas to a wide range of 
fi elds. He also travelled widely, and is 
said to have corresponded with more 
than 600 people, including many 
infl uential mathematicians and 
scientists of the day. Leibniz invented 
an early calculating machine, and 
worked on the mathematics of zero and one; this is now 
called binary mathematics and forms the basis of modern 
computer systems.

In this chapter you will learn:

 the two concepts of the 
derivative
– as a rate of change of a 

function
– as a gradient of a graph

 about the concept of the 
gradient of a curve as the 
gradient of a tangent line

 that if f(x) = axn, then 
f ′(x) = nxn − 1

 how to fi nd the derivative 
of functions of the form 
f(x) = axn + bxm + … where all 
exponents are integers

 how to fi nd the gradient of a 
curve at given values of x

 how to fi nd the values of x 
at which a curve has a given 
gradient

 how to fi nd the equation of 
the tangent at a given point on 
a curve

 how to fi nd the equation of 
the line perpendicular to the 
tangent at a given point (the 
normal).

 Chapter 20 Introduction to 
differential calculus
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Mathematical concepts can take centuries to grow and yet be based on 
fundamentally the same idea. Archimedes proposed fi nding the area of a 
circle by looking at polygons with more and more sides; Johannes Kepler 
found a formula for the volume of barrels by splitting them into thinner 
and thinner slices. Th e same idea (of dividing into more and more 
smaller and smaller pieces) lies behind the development of ‘integral 
calculus’. Two hundred years before Newton and Leibniz, Madhava of 
Sangamagrama (in present day Kerala, India) worked on the idea of 
infi nite series and found a value for π that was accurate to 13 decimal 
places. Owing to his work on the links between fi nite algebra and infi nite 
series, he is now also considered to be an important fi gure in the history 
of calculus.

20.1  The derivative

A straight line has constant gradient. For a straight line plotted on (x, y) 
axes, the gradient is defi ned as:

m = change in vertical distance
change in horizontal distancecc

change in 
change in

= y
x

 
You met this formula in Chapter 14.

So a constant gradient means that the rate at which y changes with x is 
always the same.

How can we adapt this idea to defi ne the gradient of a curve?

Using a GDC or maths soft ware on a computer, you can graph a curve 
and ‘zoom in’ on it to look more closely at a small section, as shown in 
the following three diagrams. Th e more you zoom in, the more the curve 
looks like a straight line. 

 How is it possible 
to reach the same 
conclusion from 

different directions? Can 
the development of 
mathematics be thought of 
as a straight line, or is it 
more like a tree diagram? 
(You learned about tree 
diagrams in Chapter 10.)
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If we use the defi nition of the gradient of a straight line given above 
for a very short section of curve, we can get a good approximation of 
the ‘gradient’ of the curve in that region. By taking shorter and shorter 
sections around a particular point on the curve and calculating the 
gradient over them, you can obtain better and better estimates of the 
gradient of the curve at that point.

Finding the gradient of a curve at a point
Look at the graph of y = x2:
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Th e gradient is diff erent at every point on the curve. For example:

 when x = −2.5, the curve is decreasing steeply — the gradient is 
negative and large

 as x increases towards zero, the gradient remains negative but 
becomes smaller in magnitude (the curve becomes less steep)

 the curve is ‘fl at’ at (0, 0), which means here the gradient is zero

 as x increases from 0, the curve slopes upward and gets steeper — the 
gradient is positive and getting larger.
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Th e rate of change of y against x is diff erent at every point on the curve.

To fi nd the gradient at any particular point P on the curve y = x2, start by 
considering a chord PQ across a segment of the curve.

For example, to fi nd the gradient at (2, 4), plot the points P(2, 4) and 
Q(3, 9) on the curve and join them with a straight line.
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Th e gradient of the chord PQ is 9 4
3 2  = 5.

Now move Q closer to P. Th e chord PQ becomes shorter and also lies 
closer to the section of curve between P and Q. For instance, taking Q to 
be (2.5, 6.25):
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Th is time, the gradient of PQ is 6 25 4
2 5 2−  = 4.5.

If we continue to push Q towards P, the values of the gradient of PQ are 
as follows:

P Q Gradient of PQ

2 3 9 4
3 2

 = 5

2 2.5 6 25 4
2 5 2−

 = 4.5

2 2.25 5 0625 4
2 25 2
.

.
−  = 4.25

2 2.1 4 41 4
2 1 2
.
. −

 = 4.1

2 2.01 4 0401 4
2 01 2
. −  = 4.01

You can see that as Q moves closer to P, the gradient of the line PQ gets 
closer to 4.

When P and Q are so close that they are eff ectively the same point, the 
line PQ becomes the tangent to the curve at the point (2, 4).

Th e tangent to a curve is a straight line that touches the curve at one 
single point. Th e gradient of the curve at a point will be the same as the 
gradient of the tangent at that point.

We can use the same technique as above to fi nd the gradient of the y = x2 
curve at other points.

If you repeat the calculations you did for the point (2, 4) at diff erent 
points on the curve, you will get results like the following:

P Gradient of curve at P Pattern observed
(−3, 9) −6 −3 × 2 = −6
(−2, 4) −4 −2 × 2 = −4
(−1, 1) −2 −1 × 2 = −2

(0, 0) 0 0 × 2 = 0
(2, 4) 4 2 × 2 = 4

(4, 16) 8 4 × 2 = 8
(x, x2) 2x x × 2 = 2x

Th ese results suggest that the gradient of y = x2 at any point on the curve 
can be calculated by multiplying the x-coordinate of that point by 2. 
Note that the gradient of a curve depends on the position at which you 
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are calculating it; in other words, the gradient is itself a function of x. It is 
oft en referred to as the gradient function of a curve.

 
You learned about functions in Chapter 17.

Using more compact notation makes it easier to list results and 
conclusions. Th ere are two types of notation that are commonly used. 
You should be familiar with both as you might meet either of them in the 
examinations.

Th e notation introduced by Leibniz is generally considered more 
convenient than that formulated by Newton, and is oft en the one that is 
used by teachers when they fi rst introduce students to calculus.

Leibniz notation Newton’s notation
Equation of curve 
or function y = x2 f(x) = x2

Equation for the 
gradient 

d
d

yd
x

 = 2x  f ′(x) = 2x

In applications, oft en the independent variable is called t (for time) 
instead of x, in which case we would write, for example: 

 in Leibniz notation, if y = t2 then d
d

yd
t

 = 2t

 in Newton’s notation, if f(t) = t2 then f (ʹt) = 2t.

20.2   Differentiation
Th e process of fi nding the gradient function of a curve is called 
diff erentiation. To ‘diff erentiate’ a function or the equation of a curve 
means to fi nd its derivative or gradient. Both numerical diff erentiation 
and diff erentiation from fi rst principles will give the following results for 
these curves. (See Learning links 20A on page 581 if you are interested in 
diff erentiation from fi rst principles.)

Function 
y = f(x)

Derivative d
d

yd
x

Graph of function

y = x2 2x
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Some people remember Leibniz 
notation as d

d
difference in
difference in

y ydifference in
x xdifference in=

d
d

y
x  is pronounced ‘DY by DX’.

hint
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Function 
y = f(x)

Derivative d
d

yd
x

Graph of function

y = x3 3x2
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continued . . .
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Function 
y = f(x)

Derivative d
d

yd
x

Graph of function

y = 5x3 – 2x 15x2 – 2
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In each case:

 y = f(x) gives the rule for plotting the original curve

 d
d

yd
x

 gives the formula for fi nding the gradient at any point on the curve.

If you look carefully at the results in the table above, you can see that 
there is a general rule relating the formula for the function and the 
formula for the gradient.

 If y = xn, then d
d

yd
x

 = n × xn−1 or, equivalently, f x x f nxnf nx)x ( )xx= x ′ −1 
in Newton’s notation

 If y = a × xn, then d
d

yd
x

 = n × a × xn−1 = naxn−1 or, equivalently, 

f x f x naxn nf nax)x )xx= ⇒axn ′ = −1

Th e formula that you are given in the Formula booklet is in Newton’s 
notation:

a =πr 2 f(x) = axn ⇒ f ʹ(x) = naxn – 1

In words we say: ‘to diff erentiate a power of x, multiply by the power 
and then reduce the power by one. If there is a coeffi  cient (or constant 
factor), multiply the coeffi  cient by the power’.

Th e following example uses both styles of notation.

continued . . .
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In parts (c) and (d) of Worked example 20.1, each term has been 
diff erentiated separately.

Th is is the procedure to follow for all curves whose equations are made 
up of more than one term:

If y = axn + bxm + … , then d
d

yd
x

 = anxn − 1 + bmxm − 1 + …

Th is is called the ‘derivative of a sum’ in the Formula booklet:

 f(x) = axn, g(x) = bxm ⇒ ′ + ′ =f x′ g x nax m+ bxn m− m+ bx)x ( )x 1 1−b m++ m+ bx  (in Newton’s notation)a =πr 2

Remember that each term of an 
equation is separated by either a ‘+’ 

or ‘−’ operator or the ‘=’ sign. The 
‘×’ and ‘÷’ operators do not separate 

terms; they form part of the term.

hint

Worked  example 20.1

 Diff erentiate:

 (a) y = x4

 (b) f(x) = 3x2

 (c) y = 6x3 + 2x2

 (d) f(x) = 1
2  

x3 − 6x

 (a) 
d
d

y
x

 = 4 × x4−1 = 4x3

 (b) f ′(x) = 2 × 3x2−1 = 6x1 = 6x

 (c) 
d
d

y
x

 = 3 × 6x3−1 + 2 × 2x2−1

   = 18x2 + 4x

 (d) f ′(x) = 3 × 
1
2

 x3−1 – 1 × 6x1−1

   = 
3
2  

x2 − 6x0

   = 1.5x2 − 6

The power is 4, so multiply by 4 and then reduce the 
power by 1.

The power is 2, and there is also a coeffi cient 3, so 
multiply the coeffi cient by 2 and reduce the power. 

Now we have a sum of two powers of x, both with 
coeffi cients. Differentiate each term separately; fi rst 
differentiate 6x3 and then 2x2. Then add the results 
together.

Follow the same procedure as in (c). Remember that 
x = x1 and reducing the power by 1 gives x0 = 1.
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Exercise 20.1

1. Find d
d

yd
x

 for each of the following functions.

(a) y = x5 (b) y = 6x3

(c) y = −7x4 (d) y = 4
3

x6

(e) y = x2 − 4x (f) y = 8x9 − 15x2

(g) y = 19x + 11x2 (h) y = 3x2 + 5x − 7x3

2. Find ′f x′ )x  for each of the following functions.

(a) f(x) = x − x7 (b) f(x) = 20x2 − x9

(c) f(x) = 11x3 − 9x2 − 7x (d) f(x) = 6x5 − x3 − 13x

(e) f(x) = 10x − 9x2 − x4 (f) f(x) = 8x4 − 5x3 + 2x2 + 7x

(g) f(x) = 1
2

x2 + x3 − 2
3

x5 (h) f(x) = 0.3x3 + 0.12x2 − x

Learning 

links
20A Differentiation from fi rst principles

As shown above, the gradient function of a curve can be found by taking different 
points on the curve (corresponding to different values of x) and calculating the 
gradients of shorter and shorter chords starting from each point. This method 
is called ‘numerical differentiation’, because you use actual numbers in the 
calculations.

You can follow a similar procedure but put letters in place of the numbers, by 
using algebra. This method is referred to as differentiation from fi rst principles.

For example, on the curve y = x2, take a general point P(x, x2) and another 
point which is a distance h from P in the horizontal direction; it will be the point 
Q((x + h), (x + h)2):
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The gradient of PQ is:

( ) x)
x x
x x x

x

x

))
+

= x −

=

= +x

h
h h+
h

h h+
h
h

2 2x

2 2+ xh h+ 2

22

2

Moving Q closer to P is the same as letting h get smaller and smaller. This is 
written as ‘h → 0’ in mathematical notation (pronounced as ‘h tends to zero’). 
So, when h → 0, 2x + h approaches 2x. Therefore we can say that the gradient 
of the curve y = x2 at the point (x, x2) is 2x, or d

dd
y
xx  = 2x.

This is not covered in the syllabus, but you might see in other books the notation    
d
d

y

hx x= ( )hx
→
li

0
2)hx h+x  this just means that the derivative has been calculated 

using fi rst principles, i.e. ‘as h tends to zero’.

1. The diagram shows a curve with two points P(2, 8) and Q(4, 64) marked on it.

–2–4

20

40

y

x
0

60

2

–20

4 6

80
Q (4, 64)

y = x3
100

P (2, 8)

Complete the table below by following these steps:

  Find the gradient of the chord PQ.

  Keeping P fi xed at (2, 8), change the coordinates of Q progressively 
by reducing the x-coordinate from x = 4 down to x = 2.001.

exam 
tip

Differentiation from fi rst principles 
will not be examined, but it helps to 
understand the basic idea, which is 
very important in the development 

of calculus.

continued . . .

 The number h is brought closer and closer to zero 
but can never equal zero, because when h = 0 the 

expression for the gradient of PQ, which is 
f f( )h ( )−)h

h , will have a zero in the denominator. This is an 
important issue, referred to as the understanding of 
limits, which neither Newton nor Leibniz addressed in 
their work.
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  Find the gradient of each chord PQ as Q gets closer to P.

P Q Gradient of PQ

2 4
64 8
4 2

−  = 28

2 3.5
42 875 8

3 5 2
. −

−
 = 23.25

2 3
27 8
3 2

−  = 19

2 2.5

2 2.3

2 2.1

2 2.01

2 2.001

2 2.0001

(a)  As Q moves closer to P, the gradient of the line PQ becomes closer to 
the value ___________.

(b)  The gradient of the tangent to the curve at x = 2 is ___________.

2.  Repeat the process in question 1 for the function y = x2 + x, using the initial 
coordinates P(3, 12) and Q(4, 20).

(a) Draw a sketch of the graph y = x2 + x.

(b) Copy and complete the table below.

P Q Gradient of PQ

3 4
20 12
4 3

−
 = 8

3 3.5
15 75 12

3 5 3
. −

−
 = 7.5

3 3.4
14 96 12

3 4 3
. −

−
 = 7.4

3 3.2

3 3.1

3 3.01

3 3.001

3 3.0001

(c)  As Q moves closer to P, the gradient of the line PQ becomes closer to 
the value ___________.

(d)  The gradient of the tangent to the curve at x = 3 is ___________.

continued . . .
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Differentiation in more detai l
So far, we have seen the general rule for diff erentiating powers of x by 
looking at positive integer powers. However, the rule can be proved to 
hold for all power functions xp where p can be zero, negative, a rational 
number, or even an irrational number.

Diff erentiation should also confi rm some geometrical facts that you 
already know.

Differentiating constants

To di ff erentiate y = 5, note that since x0 = 1, we can rewrite the function 
as y = 5x0.

Th en, using the general rule gives d
d

yd
x  = 0 × 5x0−1 = 0.

Let’s look at the graph of y = 5:
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A horizontal line has a gradient of zero, so diff erentiation has confi rmed 
something that you already know, that y = 5 is a horizontal line.

Th e graph of y = c, where c is any constant, will be a horizontal line with 
gradient zero. So whenever you diff erentiate a constant, you get zero:

If y = c, then d
d

yd
x
 = 0.

Differentiating a straight line

T o diff erentiate y = 3x, note that since x = x1, we can rewrite the function 
as y = 3x1.

Th en, using the general rule gives d
d

yd
x  = 1 × 3x1−1 = 3x0 = 3.

So y = 3x is a line with a gradient of 3.

Compare this with the equation y = mx + c which you are already 
familiar with, where the coeffi  cient of ‘x’ gives the gradient of the line.

Now let’s diff erentiate y = 3x + 2. If we rewrite it as y = 3x1 + 2x0, then 
applying the general rule gives d

d
yd
x  = 1 × 3x1−1 + 0 × 2x0−1 = 3 + 0 = 3.

 
You learned about 
y = mx + c in 
Chapter 14.

Learning 

links

20B Rules of indices

In the expression xn, n is 
referred to as the power, 
exponent, or index 
(plural: indices). Some 
properties of indices that 
are used in proving that 
the differentiation rule 
f f nf nn( ) ( )( )) xnnnn)⇒x ′ −1  
holds for n ∈ ! are the 
following:

 x0 = 1

 xn × xm = xm + n

 xn ÷ xm = xn − m

 (xn)m = xnm

 1
xn  = x −n

 xx x1 n

Learn
k
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Again, comparing this with y = mx + c confi rms that m = 3 is the 
gradient of the line. It also tells us that the y-intercept, 2 in this case, 
has no eff ect on the gradient; it simply positions the line relative to the 
coordinate axes.

–4

–2

2

4

y
y = 3x + 2 

x
0

6

2

–2

–4 4

Differentiating a rational function

To diff erentiate the rational function y = 2
x

, rewrite it as a power function 
with a negative power: y = 2

x  = 2x−1.

Th e general rule then gives d
d

yd
x  = −1 × 2x−1 − 1 = −2x−2 = −2

2x .

Th e general rule is used in exactly the same way for a negative index as it 
is for a positive index.

Th e gradient function −2
2x  shows that the gradient of the curve will always 

be negative. If you look at the graph, notice that both of the curves that 
make up the graph are always sloping downwards.
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Worked example 20.2

Q. Th e function f(x) is give n by f(x) = x4 − 3x3 + 5x + 7.

 (a) Find f ′(x).

 (b) Calculate the value of f ′(x) when x = −1.

A. (a) f ′(x) = 4x3 − 9x2 + 5

 (b) When x = −1,

  f ′(−1) = 4(−1)3 − 9(−1)2 + 5
   = −4 − 9 + 5 = −8

Differentiate each term separately 
according to the general formula 
on page 580. Differentiating the 
constant 7 gives 0.

The derivative ′f ( )  is itself a function 
of x, so you can evaluate it at any 
given x value. Substitute in x = –1.

In examinations, several diff erent instructions may be used that all mean 
‘fi nd d

d
yd
x
’:

Instruction Example function given Example answer
Find f ′(x) f(x) = 3x3 − x + 2 f ′(x) = 9x2 − 1

Diff erentiate with respect to x y = 5 − x2 d
d

yd
x

 = −2x

Find the gradient function g(t) = 4t2 + 3t g ′(t) = 8t + 3
Find the derivative of the function h(x) = 9x − 2x4 h ′(x) = 9 − 8x3

Worked example 20.3

Q. Th e equation of a curve is given as y = 2x3 − 5x2 + 4

 (a) Find d
d

yd
x

.

 (b) Copy and complete the table below.

x −1 0 1 2 3
y −3 4 0 13

d
d

yd
x

0 −4 24

 (c) What is the gradient of the curve when x = 2?

 (d) Use the table to sketch the graph of the curve.
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A. (a) 
d
d

y
x

 = 6x2 − 10x

 (b) x −1 0 1 2 3

y −3 4 1 0 13

d
d

y
x

16 0 −4 4 24

 (c) When x = 2, 
d
d

y
x

 = 4

 (d) 

–2

5

10

y

x
0
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2

–5

–4 4 6 8

 

Differentiate term by term using the 
general formula on page 580.

To fi nd the missing entry in the 
second row, substitute that value of 
x into the equation for the curve.

To fi nd the missing entries in the third 
row, substitute the corresponding 

values of x into the equation for d
d

y
x

.

The gradient of the curve when x = 2 

is the value of d
d

y
x

 at x = 2. You can 

read this off from the table in part (b).

Use the fi rst two rows of the table 
to plot points on the curve; the third 
row tells you how steep the curve 
should be at those points.

continued . . .

Worked example 20.4

Q. (a)  Write f(x) = 3
2x

 in the form f(x) = 3xn. 

Use this form to diff erentiate f(x).

 (b)  Write f(x) = 1
2 3x

 in the form f(x) = 1
2

xn. 

Use this form to diff erentiate f(x).
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A. (a) f(x) = 
3

2x
 = 3x−2.

  ′f ( )  = −2 × 3x−2−1 = −6x−3

  or ′f ( )  = 
−6

3x

 (b) f(x) = 
1

2
1
23

3

x
x= −

  

′ ×

= −

= − ×

= −

−

−

f ( ) x×= −)

x

x

x

3
1
2

3
2
3
2

1

3
2

3 1−

4

4

4

A power of x in the denominator can be 
written as a negative power and then 
differentiated using the formula on page 580.

The power can be treated in the same 
way as in part (a), but in (a) the constant 3 
was in the numerator, and here we have a 
coeffi cient 2 in the denominator instead.

Take extra care when working with 
coeffi cients and constants in the 
denominator. When differentiating, the value 
of the power has to multiply the fraction 1

2 , 
not the 2 in the denominator. Also be careful 
not to accidentally switch the numerator and 
denominator, which is a common mistake.

Exercise 20.2

1. Find d
d

yd
x

 for each of the following functions.

(a) y = 5
7x  

(b) y = 2x5 − x−2

(c) y = x3 − 9
8 2x  

(d) y = x − 3
4 2x

(e) y = 3x−5 − 11x2

2. Find f x′ )x  for each of the following functions.

(a) f(x) = x8 + x−5 + 6 (b) f(x) = 8x4 − 2x3 + x−4 + 13x

(c) f(x) = 1
3x

 − 10x + 2 (d) f(x) = 5
7x
 + 4x − 13

(e) f(x) = 9x − 3
5x

3. Diff erentiate the following with respect to x.

(a) 1 + x − 3x3 + 5x5 − 7x7 (b) 3 − 4x−2

(c) 10x + 9x−3 + 2
x  

(d) 3
7

x2 + 5
2x

(e) 1
3x

 − 4x−5

continued . . .

A powe
written
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4. A function is defi ned as f(x) = 2x3 − 7x2 − 4x + 9

(a) Find the gradient function f ′(x).

(b) Find the gradient of the function when:

 (i) x = 1

 (ii) x = −2

 (iii) x = 0

(c)  Find the value of f ′(−1) and explain what your answer represents.

5. Th e equation of a curve is defi ned as y = 10 + 8x − 2x3

(a) Find d
d

yd
x

.

(b) Calculate the gradient of the function when:

 (i) x = 0

 (ii) x = −2

 (iii) x = 3

20.3  Rates of change
Lei bniz defi ned the derivative by calculating how the gradient of a 
curve changes. He took a graphical approach that was based on the 
rate at which ‘y’ changed in relation to a small change in ‘x’. Newton’s 
development of calculus was built on his work with rates of change in 
physics; he used variables other than ‘x’ and ‘y’.

As you have seen in Chapter 18, the height of a ball that has been thrown 
can be modelled by a quadratic function of time. Here is an example of a 
graph of height plotted against time:

1 1.5 20.5

1

2

3

4

5
h

t
0
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Th e curve gets fl atter near the top, showing that the ball slows 
(decelerates) as it goes higher; it stops for an instant at the maximum 
height, where the derivative (gradient of the curve) is zero, and then 
descends, gaining speed (accelerating) as it does so, which is shown by 
the curve getting steeper.

If the height of the ball is described by the equation h = 2 + 6t − 5t2, then 
the rate at which the height is changing is given by d

d
h
t . So

h = 2 + 6t − 5t2 gives the height of the ball at time t;
d
d

h
t  = 6 − 10t gives the rate at which the height is changing at time t.

Other variables are used in economics. For example, an equation can be 
used to describe the total cost (CT) of manufacturing a certain quantity q 
of a product.

Th e marginal cost (CM) is the change in total cost resulting from a small 
change in output.

If CT = 6q2 − 7q + 10

then CM = d
d

TC
q

 = 12q − 7

Whenever you want to fi nd the rate of change of one quantity against 
another, you can use calculus. In any context, it is important to know 
what is the independent variable (x, t, q in our examples, or something 
else) and what is the dependent variable (y, h, CT in our examples, or 
something else).

For instance, if you are studying the rate at which a plant grows, the 
height of the plant might be the dependent variable, and time will be the 
independent variable.

Worked example 20.5

Q. Ped throws a stone into a pond and watches the 
circular ripples spread out from the centre. Th e area 
of a circular ripple is given by the formula A = πr2.

 (a)  What is the average change in ripple area as the 
radius changes from 3 m to 6 m?

 (b)  What is the rate of change of the ripple area when 
the radius is exactly 4 m?
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 A. (a)  Average change in area  = 
π × π ×6 π 32 2×π 3

6 3−
= 9π

 (b)
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C: r = 4

A

r

 

d
d

A
r

 = 2πr

 When r = 4, 
d
d

A
r

 = 2π × 4 = 8π

Sketch the graph of A against r.

The average change in area as 
the radius changes is given by 
change in area

change in radius
. On the graph, this 

is the gradient of the chord AB.

The rate of change when r is exactly 
4 is given by the gradient of the 
tangent at point C.

This is just the derivative d
d
A
r

, 
evaluated at r = 4.

continued . . .

exam 
tip

The rate of change in part (b) of 
Worked example 20.5, i.e., the 
gradient of the tangent at a 
point, can also be called the 
‘instantaneous rate of 
change’.
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Exercise 20.3

1. Th e displacement s, in metres, of a particle t seconds aft er leaving 
point O is given by:

 s(t) = 3t2 − 5t + 6

(a) Find the average change in displacement between t = 1 and t = 4.

(b) What is the rate of change of displacement when t = 5?

(c) Calculate ′s ( ) and explain what your answer represents.

2. A football is kicked vertically upwards. Its height h above the ground 
aft er t seconds is described by h = 14t − 10t2.

(a) Diff erentiate h with respect to t to fi nd d
d

h
t

.

(b)  Given that d
d

h
t

 represents the velocity of the ball at a given 

instant, fi nd the velocity of the ball when:

 (i) t = 0.5

 (ii) t = 0.7

3. Th e surface area of a circular pool of water is spreading uniformly. 
Th e area is A = πr2, where r is the radius of the circle in metres.

(a)  Find the average rate of change of the area as the radius changes 
from 2 m to 4 m.

(b)  Determine the rate of change of the area when the radius is 
exactly 5 m.

20.4  The second derivative
We have seen that the derivative, or gradient, of a curve is itself a function 
of the independent variable. As it is a function, it too can be diff erentiated. 
Th e method is exactly the same as for fi nding the fi rst derivative, but the 
result has a diff erent meaning and is called a ‘second derivative’.

In physics, velocity is the rate of change of the distance moved in a 
certain direction, i.e. the displacement; in other words, velocity is the 
derivative of displacement with respect to time. Th e rate of change of 
velocity is called acceleration, so acceleration is the second derivative of 
displacement with respect to time.

For example, if the distance travelled by an object is given by the 
function:

s = 3t2 − 2t3 + 1

 According to 
Simon Singh, in 
his book Fermat’s 

Last Theorem, (London: 
Fourth Estate, 1997) 
‘Economics is a subject 
heavily infl uenced by 
calculus. Infl ation is the 
rate of change of price, 
known as the derivative of 
price, and … the rate of 
change of infl ation [is] 
known as the second 
derivative of price …’

The mathematician Hugo 
Rossi once observed 
the following: ‘In the fall 
of 1972 President Nixon 
announced that the rate of 
increase of infl ation was 
decreasing. This was the 
fi rst time a sitting president 
used a third derivative 
to advance his case for 
re-election.’ (Hugo Rossi, 
Notices of the American 
Mathematical Society 
(Vol 43, Number 10, 1996).)
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then the velocity is:

v = d
d

s
t

 = 6t − 6t2

and the acceleration is:

a = d
d

2

2

s
t

 = 6 −12t

(the expression d
d

2

2

s
t

 is pronounced as ‘D two S by D T squared’).

If distance is measured in metres and time in seconds, then velocity is 
measured in metres per second (m s−1) and acceleration is measured in 
metres per second per second (m s−2).

Using Newton’s notation, we have the displacement s = f(t), the velocity 
v = f ′(t) and the acceleration a = f ″(t).

exam 
tip

Examiners will not assume that 
students have knowledge of the 
second derivative. You may use 
the second derivative to answer 
examination questions though, as 
long as your working makes it clear 
that you understand why you are 
using the second derivative and you 
have given a clear result.

Worked example 20.6 

Q. A ball is thrown from the top of a cliff . Its height in metres 
above the cliff -top t seconds aft er being thrown is given by 
h = 1.5 + 3t − 5t2. Find the equations for the velocity and 
acceleration of the ball, and interpret their meaning.

A. h = 1.5 + 3t − 5t2

 Velocity = 
d
d

h
t

 = 3 − 10t

 When t is very small, the velocity is positive, which means that 
the ball is initially moving upwards. When t gets bigger than 0.3, 
the velocity becomes negative, which means that after 0.3 
seconds the ball is falling downwards.

 Acceleration = 
d
d

2

2

h
t

 = −10

 The acceleration has a constant magnitude of 10 m s−2, and the 
negative sign tells us that its direction is downward. This is the 
acceleration due to gravity. 

Differentiate the height 
function to get the velocity.

Differentiate the velocity to 
get acceleration.
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20.5  Gradient of a curve at a given point
Diff erentiation can give you the gradient function for any curve.

By using the formula given in section 20.2, you can fi nd the gradient 
function of any curve with an equation of the form f(x) = axn + bxm + ….

It is possible to diff erentiate far more complex curves, but those methods 
are not in the syllabus for this course.

Th e following curve is the graph of f(x) = 6 − x − x2.

–2

2

4

y

x
0

6

8

2

–2

–4 4

Diff erentiate to fi nd the equation of the gradient function:

f ′(x) = −1 − 2x

Using this equation you can calculate the gradient at any particular point 
on the curve. For instance:

When x = −2, f ′(x) = −1 −2 × (−2) = −1 + 4 = 3; the gradient is positive.

When x = − 1
2 , f ′(x) = −1 − 2 × ( − 1

2 ) = −1 + 1 = 0; the gradient is zero.

When x = 1.5, f ′(x) = −1 − 2 × 1.5 = −1 − 3 = −4; the gradient is negative.

Compare these results with the graph. Notice that as x increases, the 
gradient changes from positive values, through zero, to negative values.

Finding x- and y- coordinates from the gradient
It is also possible to work backwards: if you are given a specifi c 
value of the gradient, you can use the gradient function to fi nd the 
x-coordinate(s) of the point(s) on the curve with that gradient. 
Once you know the x-coordinate, you can use the equation of the curve 
to calculate the corresponding value of y.
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Consider the function f(x) = 6 − x − x2 again. What are the coordinates of 
the point where the curve has a gradient of 4?

Th e gradient function is f ′(x) = −1 − 2x, so you are looking for the x 
value that makes this equal to 4:

−1 − 2x = 4

so  x = −2.5

For x = −2.5, use the equation f(x) = 6 − x − x2 to fi nd the corresponding 
y-coordinate:

f(−2.5) = 6 − (−2.5)− (−2.5)2 = 6 + 2.5 − 6.25 = 2.25

Th e curve f(x) = 6 − x − x2 has a gradient of 4 at the point (−2.5, 2.25).

Worked example 20.7

Q. Consider the fun ction f(x) = x3 + 2x2 − 12x + 8. Find:

 (a) f ′(x)

 (b) f ′(2) (the value of f ′(x) when x = 2)

 (c)  the coordinates of the point where the gradient 
is 27.

 

A. (a) ′f ( ) = 3x2 + 4x − 12

 (b) f ( )  = 3 × 22 + 4 × 2 − 12 = 12 + 8 − 12 = 8

 (c) 3x2 + 4x − 12 = 27

  3x2 + 4x − 39 = 0

Sketch the curve using either your 
GDC or a computer, it will help you to 
understand the rest of the question. 
(See ‘22.2G Graphs’ on page 645 
of the GDC chapter if you need a 
reminder.) 

Differentiate term by term using the 
formula on page 580.

Substitute x = 2 into the gradient 
function.

You want to fi nd the value of x for 
which ′f ( ) = 27. 

Rearrange into the general form of a 
quadratic equation (ax2 + bx + c = 0).
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  From GDC: x = 3 or x = −4.33

  When x = 3, y = 33 + 2 × 32 − 12 × 3 + 8 = 17
  When x =  −4.33, y = (−4.33)3 + 2 × (−4.33)2 − 

12 × (−4.33) + 8 = 16.2
  The points are (3, 17) and (–4.33, 16.2).

Use your GDC (or other method) to 
solve the equation. (See Chapter 2 for 
a reminder of methods.)

The question asks for the coordinates 
of the points, so use f(x) = x3 + 2x2 − 
12x + 8 to fi nd the y-coordinate 
corresponding to each x value.

continued . . .

Worked example 20.8

Q. As part of their Business Studies course, Myra and 
Salim have set up a company to manufacture scarves. 
Th ey calculate that the total cost of production (CT), in 
US dollars, is given by the function:

 CT = 2q2 − 6q + 5

 where q is the number of scarves produced.

 (a)  Find the value of the marginal cost, d
d

TC
q

, 

when q = 25. (Th e marginal cost can be thought 
of as the additional cost of making one extra scarf 
above the current quantity.)

 (b)  If the marginal cost is $42, how many scarves are 
they producing?

A. (a) 
d
d

TC
q

 = 4q − 6

  When q = 25, the marginal cost is
  4 × 25 − 6 = $94

 (b) 4q − 6 = 42
  4q = 48
  q = 12

  They are making 12 scarves. 

Differentiate CT to get the marginal 
cost function.

Now we want to fi nd the value of q 
for which d

d
TCT

q  = 42.

Use you
solve th
a remin
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 Using your GDC for differential calculus
Your GDC cannot diff erentiate a function for you, but there are many 
ways in which your GDC can help you with questions involving 
gradients. Here are some ideas.

Your GDC can:

 draw the curve, so that you can see how the gradient changes

 get the value of d
d

yd
x

 for a given value of x

 fi nd the y-coordinate corresponding to any given x-coordinate

 solve any equations that arise in the problem.

 Worked example 20.9

Q. (a) Diff erentiate the following function with respect to x:

   f(x) = 2x2 − x + 1
x

 (b) Calculate f ′(3).

 (c)  Find the value of x at the point where the gradient of the 
curve is 2.

 

TEXAS CASIO

 A. (a) f(x) = 2x2 − x + x−1 

  ′f ( ) = 4x − 1 − x−2

   = 4x − 1 − 
1

2x

Draw the curve on your 
GDC to get an idea of 
what you’re dealing with. 
(See ‘22.2G Graphs’ on 
page 645 of the GDC 
chapter if you need a 
reminder of how.) 

Rewrite f(x) as a sum of 
powers of x.

Differentiate term by term 
using the formula on 
page 580.

Your calculator can’t help 
you with this!
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If you are asked for the coordinates of the point where the gradient has a 
particular value, you can fi nd this information using the table function on 
your GDC (see ‘20.1 (b) Finding the numerical value of the derivative ( )d

d
yd
x  

using the table’ on page 687 of the GDC chapter of you need a reminder 
of how to do this). For part (c) of Worked example 20.9, the table on a 
CASIO calculator would look like this: 

From the table you can see that when the gradient (third column) is 2, the 
x-coordinate is 1 (fi rst column) and the y-coordinate is 2 (second column). 
So (1, 2) is the point on the curve where the gradient is 2.

 (b)

 

TEXAS CASIO

 When x = 3, 
d
d

y
x

 = 10.9

 (c) 4x − 1 − 
1

2x
 = 2

 

TEXAS CASIO

 The gradient of the curve is 2 at the point where x = 1.

Calculating ′f ( )  is the 

same as fi nding d
d

y
x

 when 

x = 3. You can substitute 
x = 3 into the derivative 
function found in part (a) 
or use your GDC. See 
‘20.1 (a) Finding the 

numerical value of 
d
d

y
x

 using 

a graph’ on page 686 
of the GDC chapter if you 

need to .

To fi nd the value of x 
where the gradient is 2, 
you need to solve the 
equation ′f ( ) = 2.

continued . . .

You can use the equation 
solver on your GDC. See 
‘19.2 (b) Solving unfamiliar 
equations using the 
equation solver’ on 
page 685 of the GDC 
chapter if you 

need to.

Calculat

same as
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Note that on a TEXAS GDC, the table will not show values of the 
gradient in the third column. In this case, you would need to fi nd the 
value of x for a given gradient, and then look up the corresponding 
y value in the table.

Exercise 20.4

1. Find the gradient of the following curves at the points with the 
specifi ed x-coordinates:

(a) f(x) = 3x4, when x = 5 (b) g(x) = −12x3, when x = 1

(c) h(x) = x2 − 13x, when x = 0 (d) y = 8x − 5
6

x2, when x = −6

(e) y = x2 − 10x + 7, when x = 3 (f) y = 5 + 6x − 4x3, when x = −2

(g) f(x) = 7 − 8x2 − 2x3, when x = −1

(h) f(x) = 11 − 2x2 + 3x4, when x = 1
2

(i) y = 9 − 8x2 + 2
3

x3, when x = 4

(j) y = 5
2x

, when x = 1

(k) f(x) = 3x + 12
4x

, when x = −3

(l) y = 5
3x

 + 1
4x

, when x = 2

2. In the following questions you are given the equation for the total 
cost of production, C, for a quantity of items, q.

In each case:

(i)  Work out an equation for the marginal cost by diff erentiating 

the total cost with respect to q; that is, fi nd d
d
C
q

.

(ii) Determine the marginal cost for the stated value of q.

(a) C(q) = 8q2 − 9, when q = 10

(b) C(q) = 300 + 5q2, when q = 120

(c) C(q) = 70 + 5q + 3q2, when q = 80

(d) C(q) = 3q2 − 10q + 64, when q = 14

(e) C(q) = 2q3 − 9q2 + 45q + 7, when q = 200

3. Th e equation defi ning a function is y = x2 − 4x − 12.

(a) Diff erentiate the equation to fi nd the gradient function, d
d

yd
x

.

(b)  Find the gradient of the curve at the point where the 
x-coordinate is 3.

(c) Find the value of x where the gradient of the curve is 8.
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4. A function f is defi ned as f(x) = x3 − 4x2 + 8.

(a) Work out ′f x′ )x  in terms of x.

(b) Find ′f ( )− .

(c)  Find the coordinates of the points on the curve where the 
gradient is −4.

5. Th e equation of a curve is y = 2x + 1
x

.

(a) Find d
d

yd
x

.

(b)  Find the gradient of the curve at the point where the 
x-coordinate is −1.

(c)  Find the coordinates of the points on the curve where the 
gradient is −7.

6. Th e total cost (in dollars) of manufacturing q items of a certain 
product is given by:

 CT = 800 − 5q + 2
3

q2

(a) Find the marginal cost, d
d

TC
q

, when 90 items are being produced.

(b)  Find the number of items being produced when the marginal 
cost is $55.

7. Given that s = 28t − 10t2, where s is the displacement in metres and t 
is the time in seconds, fi nd an expression for:

(a) the velocity of the particle (v = d
d

s
t

)

(b) the acceleration of the particle (a = d
d

2

2

s
t

).

20.6  Equation of the tang ent at a given point
Th e tangent to a curve at a particular point has been defi ned as a straight 
line that touches the curve at that point.

It is possible to fi nd the equation of any line provided that you know its 
gradient and the coordinates of one point that it passes through. So, 
you can fi nd the equation of the tangent to a curve at a given point using 
methods that are already familiar.

If you are given the x-coordinate of the point, you can use the equation 
of the curve to fi nd the y-coordinate. Th e gradient of the tangent is 
just the gradient of the curve at that point; so to fi nd the gradient, 
diff erentiate the equation of the curve and calculate the value of the 
derivative at the given x value.
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For example, to fi nd the equation of the tangent to the curve y = 2x − x3 
at the point where x = 2:

 Calculate the y-coordinate. If x = 2, then y = 2 × 2 − 23 = 4 − 8 = −4

 Diff erentiate to get the gradient function. d
d

yd
x

 = 2 − 3x2

 Find the gradient when x = 2. When x = 2, d
d

yd
x

 = 2 − 3 × 22 = 
2 − 12 = −10

 Taking the general equation of a line, y = mx + c, put in the x- and 
y-coordinates and the value of the gradient (m) and solve for c: 
−4 = −10 × 2 + c 
  c = 16

 Hence the equation of the tangent is y = −10x + 16.

Alternatively, you can use your GDC:

 

TEXAS CASIO

TEXAS CASIO

 When x = 2, y = −4

TEXAS CASIO

 Th e equation of the tangent is y = −10x + 16. 

Draw the curve (see ‘22.2G 
Graphs’ on page 645 of the 
GDC chapter if you need to).

Look at the table of coordinates 
for the graph (see ‘20.1 (b) 
Finding the numerical 
value of the derivative 
using a table.’ on page 686 of 
the GDC chapter if you need 
to), and fi nd the value of y 
corresponding to x = 2. If you 
are using a CASIO calculator you 
will also be able to see that the 
gradient at x = 2 is −10. 

Draw the tangent to the 
curve at the point (2, −4). See 
‘20.2 Finding the equation 
of tangents at a point’ on 
page 687 of the GDC chapter if 

you need to. 

Read off the equation of the 
tangent from the screen. Note 
that you should round the 
fi gures on the screen to 
whole numbers.

Th ere is not a column for 
y ′1 in the TEXAS table of 
coordinates, so substitute 
x = 2 into the gradient 
function to fi nd y ′1. 
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Worked example 20.10

Q. Find the equation of the tangent to the curve y = 3
2x

 − 2x at the 
point where x = −2.

A. Method 1: 

     y = 
3

2x
 − 2x

     y = 3x−2 − 2x

  
d
d

y
x

 = −6x−3 − 2

  = 
− −6

2
3x

 

 At x = −2,

  y = 
3

2 4
3
4

19
42( )2

( )2−2 =)2 =

      

d
d

y
x

= − − = − = −6
2

6
8

2
5
43( )−2

 y = mx + c

 

19
4

5
4

19
4

10
4

9
4

= − × +

= +

=

( )2− c

c

c

 Equation of the tangent is

 y = − +5
4

9
4

x  

 Method 2(a): 

 

TEXAS CASIO

We will solve this problem 
fi rst using algebra and then 
using the GDC in two ways.

Using algebra: rewrite the 
function as a sum of powers 
of x, and differentiate term 
by term using the formula 
on page 580.

Find the y-coordinate and 
the gradient at x = −2.

Put these values into 
y = mx + c and solve for c.

Write down the equation of 
the tangent.

Using your GDC: draw the 
curve (see ‘22.2G Graphs’ 
on page 645 of the GDC 
chapter if you need to). 

We will 
fi rst usin
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TEXAS CASIO

 When x = −2, y = 4.75

 

TEXAS CASIO

 
d
d

y
x

 = −1.25

 y = mx + c
 4.75 = −1.25 × (−2) + c
 c = 4.75 − 2.5 = 2.25
 Equation of the tangent is
 y = −1.25x + 2.25

 Method 2(b):

 

TEXAS CASIO

 y = −1.25x + 2.25

Look at the table of 
coordinates to fi nd the 
y-coordinate corresponding 
to x = −2. (See ‘14.1’ on 
page 678 of the GDC 
chapter if you need to.) 

From the graph, fi nd the 

value of d
d

y
x

 when x = −2. 

(See ‘20.1 (a) Finding the 
numerical value of the 
derivative using a graph’ 
on page 686 of the GDC 
chapter if you need to.) 

Substitut e the values into 
y = mx + c and solve for c.

Using your GDC: on the 
graph, draw the tangent to 
the curve at x = −2. (See 
‘20.2 Finding the equation 
of a tangent at a point’ 
on page 687 of the GDC 
chapter if you need to.) 

Read off the equation of the 
tangent from the screen.

continued . . .
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Exercise 20.5

1. For each of the following curves, use your GDC to fi nd the equation 
of the tangent at the point with the given x-coordinate.

(a) y = 3x2 − 10, at x = 4 (b) y = 4 − x2, at x = −3

(c) f(x) = 9 − x4, at x = −1 (d) f(x) = x − x3, at x = 1
2

(e) y = 2x3 + 7x2 − 3x + 4, at x = 1 (f) y = 2 + 1
x

, at x = −2

(g) g(x) = 8 − 3
2x

, at x = 2 (h) y = 7 1
3 2x x3

− , at x = 1.5

2. For each of the following curves, fi nd the equation of the tangent to 
the curve at the given point.

(a) y = x2 − x −12 at (−3, 0)

(b) y = 2x3 + 3x2 − 23x − 12 at (2, −30)

(c) y = 6x3 − 19x2 + 19x − 6 at (−1
2

, −21)

(d) f(x) = 11 − 2x2 at (3, −7)

(e) f(x) = 3
2x

 − x at (1
2

23
2

, )

(f) y = 1 − 2x − 2
x

 at (−1, 5)

3. A function is defi ned as y = 2x3 − x2 + 4x + 1.

(a) Find d
d

yd
x

 in terms of x.

Th e point P lies on the curve. Th e x-coordinate at P is 2.

(b) Find the gradient of the curve at P.

(c) State the y-coordinate of P.

(d) Write down the equation of the tangent to the curve at P.

4. A function is defi ned as y = 9
16

2
− x .

(a) Find d
d

yd
x

 in terms of x.

Th e point P lies on the curve. Th e x-coordinate at point P is −1.

(b) Find the gradient of the curve at P.

(c) State the y-coordinate of P.

(d)  Write down the equation of the tangent to the curve at P in the 
form ax + by + d = 0 where a, b and d are integers.
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20.7  Equation of the normal  at a given point
A straight line that makes a right angle with the tangent to a curve at a 
particular point is called the normal to the curve at that point. As the 
normal is perpendicular to the tangent, the rule for two perpendicular 
gradients can be used:

If two lines are perpendicular, their gradients multiply to give −1.

m1 × m2 = −1

 
This relationship was covered Chapter 14.

So if the tangent at a point on the curve has gradient 4, the gradient of 
the normal will be − 1

4 , because 4 1( )1
4 .

A quick way of fi nding the gradient of the normal is to turn the gradient 
of the tangent upside down, and change the sign.

For the example above, the gradient of the tangent, which is 4, can be 
written as the fraction 4

1 . Turning it upside down gives 1
4, and then 

switching the sign gives − 1
4 .

–1

1

2

y

x
0

3

4

1

–1

–2–3 2 3

–2

normal

tangent

Th e curve illustrated in the diagram above is the function 
f(x) = 3x + x2 − x3. Th e tangent and normal have been drawn at the 
point (1, 3).

To fi nd the equation of the normal, fi rst diff erentiate the equation of the 
curve to fi nd the gradient function:

′f x′ )x  = 3 + 2x − 3x2

Replace x by 1 to get:

f ( )  = 3 + 2 × 1 − 3 × 12 = 3 + 2 − 3 = 2

Th is means that the gradient of the tangent at (1, 3) is 2.

So the gradient of the normal is − 1
2 .
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Now we can substitute the coordinates (1, 3) and the gradient − 1
2  into 

the equation y = mx + c and solve for c:

3 1
3 3

1
2

1
2

1
2

+1
= 3

c
c

Th erefore the equation of the normal is y x +1
2

1
23 .

You can also use your GDC to help you fi nd the equation of the normal. 
Some calculators have this facility built into them (most CASIO models), 
in which case you would just tell it to draw the normal to the curve at a 
specifi ed point, and it will display the equation of the normal.

Other models of calculator (most TEXAS models) may not be able to 
give you the equation of the normal directly. In this case, you could still 
use your GDC to fi nd the coordinates of the point and the gradient of 
the tangent; then follow the procedure above to calculate the gradient of 
the normal and the constant c in y = mx + c.

Worked example 20.11

Q. If f(x) = 2
2x

 + x, fi nd the equation of the normal at x = −1.

A.  TEXAS CASIO

TEXAS CASIO

 When x = −1, y = 1

Draw the curve to get an 
idea of its shape.

Look at the table of 
coordinates to fi nd the 
value of the y-coordinate.
(See ‘14.1 Accessing 
the table of coordinates 
from a plotted graph’ 
on page 678 of the 
GDC chapter if you 

need to.) 
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Exercise 20.6

1. For each of the following curves, use your GDC to fi nd the equation 
of the normal to the point with the given x-coordinate.

(a) y = 3x2 − 10, at x = 4 (b) y = 4 − x2, at x = −3

(c) f(x) = 9 − x4, at x = −1 (d) f(x) = x − x3, at x = 1
2

GDC

A normal line drawn by a GDC 
is likely to look distorted, and 
may not appear to be at right 
angles to the curve.

TEXAS CASIO

 

d
d

y
x

 = 5

 So the gradient of the normal is −
1
5

.

 y = mx + c

 

1
1
5

1
1
5

4
5

= − × +

= −1 =

( )1− c

c

 The equation of the normal is y = − +1
5

4
5

x  .

 CASIO

 

 The equation of the normal is
 y = −0.2x + 0.8

Find the value of d
d

y
x

 

when x = −1. This is the 
gradient of the tangent. 
(See ‘20.2 Finding the 
equation of the tangent 
at a point’ on page 687 
of the GDC chapter if you 

need to.) 

Now calculate the 
gradient of the normal. 
d
d

y
x

 = 5, and 5 = 
5
1

; turn 

it upside down to get 
1
5

, 

and then change the sign 

from positive to negative. 

Substitute the coordinates 
and the gradient into the 
equation for a straight line.

Finally, write down the 
equation of the normal. 

If your GDC is able to 
give you the equation 
of the normal directly, 
then you can read it off 
directly from the screen. 
(See ‘20.2 Finding the 
equation of the tangent 
at a point’ on page 687 
of the GDC chapter if you 

need to.) 

continued . . .

(TEXAS calculators do 
not have a direct function 
for this.)

ght 
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(e) y = 2x3 + 7x2 − 3x + 4, at x = 1 (f) y = 2 + 1
x

, at x = −2

(g) g(x) = 8 − 3
2x

, at x = 2 (h) y = 7 1
3 2x x3

− , at x = 1.5

2. Find the equation of the normal to the curve at the given point.

(a) y = x2 − x −12, at (−3, 0)

(b) y = 2x3 + 3x2 − 23x − 12, at (2, −30)

(c) y = 6x3 − 19x2 + 19x − 6, at (− 1
2

, −21)

(d) f(x) = 11 − 2x2, at (3, −7)

(e) f(x) = 3
2x

 − x, at ( 1
2

23
2

, )

(f) y = 1 − 2x − 2
x

, at (−1, 5)

3. Find the equation of the normal to the curve with equation 
y = 1 − 3x2 − x3 at the point where x = −1.

4. A curve is the graph of the function f(x) = x3 + 5x2 − 2. A point N lies 
on the curve. Th e x-coordinate of N is −4. Find the equation of the 
normal to the curve at the point N.

Summary

You should know:

 the  two concepts of a derivative

– as a rate of change

– as the gradient of a graph

 how to obtain a tangent to a curve at a particular point on the curve, and how to use the gradient of 
the tangent to defi ne the gradient of a curve

 the general diff erentiation formula f (x) = axn ⇒ f ′(x) = naxn−1

 how to calculate the derivative of a function of the form f (x) = axn + bxm + … where all exponents 
are integers (positive or negative)

 how to fi nd the gradient of a curve at a given value of x

 how to fi nd the value(s) of x on a curve that has a given value of f ′(x)

 how to calculate the equation of the tangent to a curve at a given point

 that the normal is the line perpendicular to the tangent at a given point

 how to calculate the equation of the normal at a given point.
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Mixed examination practice
Exa m-style questions

1. Th e equation of a curve is defi ned as y = x4 − 7x3 − 9x + 6. Find d
d

yd
x

.

2. Th e equation of a function is y = x2 − 8x + 7.

(a) Diff erentiate the equation to fi nd the gradient function d
d

yd
x

.

(b) Find the gradient of the curve at the point where the x-coordinate is 3.

(c) Find the value of x at which the gradient of the curve is 6.

3.  Th e equation for the total cost of production, CT, for a quantity of items, q, is given by:

 C(q) = 120q − q2 − 0.005q3

(a) Find an equation for the marginal cost by diff erentiating the total cost with respect to q; that is, 
fi nd d

d
TC

q
.

(b) Determine the marginal cost d
d

TC
q

 when q = 40.

4. Th e displacement, s, of a particle t seconds aft er leaving point O is described by:

 s(t) = 12 + t − t2

(a) Find the average change in displacement between t = 1 and t = 2.

(b) What is the rate of change of displacement when t = 3?

(c) Calculate ′s ( . )5.  and explain what your answer represents.

5. A particle moves such that its displacement, s metres, at time t seconds is given by:

 s = 2t3 − 4t2 + 4t − 7

(a) Find an expression for:

 (i) the velocity of the particle, v  

 (ii) the acceleration of the particle, a

(b) Calculate the velocity of the particle when:

 (i) t = 2 (ii) t = 4.

(c) Determine the acceleration of the particle when:

 (i) t = 1 (ii) t = 4.

(d) Find the time t when the acceleration is zero.

6. A curve has equation f(x) = 5x2 − 4x − 3
x

.

(a) State the value of f(1). What does f(1) represent?
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(b) Find the value of f ′(1). What does your answer represent?

Th e point Q lies on the curve. At Q, x = 1.

(c) Write down the equation of the tangent to the curve at Q.

7. A curve has equation y = x3 − 4x2 − x + 5.

(a) Find the gradient of the tangent to the curve at x = 1.

(b) State the gradient of the normal to the curve at x = 1.

Th e point P lies on the curve and has x-coordinate equal to 1.

(c) Find the y-coordinate of P.

(d) Write down the equation of the tangent to the curve at P.

(e) Work out the equation of the normal to the curve at P.

8. A curve has equation y = x2(3x − 5).

(a) Expand the expression x2(3x − 5).

(b) Use your answer from part (a) to fi nd the gradient function of the curve in terms of x.

(c) Find the gradient of:

 (i) the tangent (ii) the normal

 to the curve at the point Q whose x-coordinate is −2.

(d) Write down the equation of:

 (i) the tangent (ii) the normal

 to the curve at point Q.

Past paper questions

1. Th e fi gure below shows the graphs of functions f1(x) = x and f2(x) = 5 − x2.

–1

2

4

x0

6

1

–2

2

–4

f1

f2

–2–3

(b) 

Th e 

Topic 7 Introduction to differential calculusTT610



(a) (i) Diff erentiate f1(x) with respect to x.

 (ii) Diff erentiate f2(x) with respect to x.

(b) Calculate the value of x for which the gradient of the two graphs is the same.

(c) Draw the tangent to the curved graph for this value of x on the fi gure, showing 
clearly the property in part (b). [Total 6 marks]

[May 2007, Paper 1, Question 11] (© IB Organization 2007)

2. Consider the function f(x) = 2x3 − 5x2 + 3x + 1.

(a) Find f ′(x). [3 marks]

(b) Write down the value of f ′(2). [1 mark]

(c) Find the equation of the tangent to the curve y = f(x) at the point (2, 3). [2 marks]

[Total 6 marks]

[May 2008, Paper 1, TZ1, Question 3] (© IB Organization 2008)

3.  Th e diagram below shows the graph of a line L passing through (1, 1) and (2, 3) and the graph P of the 
function f(x) = x2 − 3x – 4.

y

x
0

L
P

(a) Find the gradient of the line L. [2 marks]

(b) Diff erentiate f(x). [2 marks]

(c) Find the coordinates of the point where the tangent to P is parallel to the line L. [3 marks]

(d) Find the coordinates of the point where the tangent to P is perpendicular to the line L. [4 marks]
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(e) Find:

 (i)  the gradient of the tangent to P at the point with coordinates (2, −6);

 (ii) the equation of the tangent to P at this point. [3 marks]

(f) State the equation of the axis of symmetry of P. [1 mark]

(g) Find the coordinates of the vertex of P and state the gradient of the curve 
at this point. [3 marks]

[Total 18 marks]

[Nov 2007, Paper 2, TZ0, Question 5] (© IB Organization 2007)

(e) 
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Stationary points 
and optimisation

 Chapter 21

Diff erential calculus provides mathematicians, scientists, economists 
and other technical professionals with a powerful technique for solving 
practical problems.

If an equation can be found that models a situation and connects some 
of the variables that are being studied, then the rates at which those 
variables change relative to each other can be analysed.

For instance:

 In medicine: What is the most effi  cient way of administering a drug? 
When is the concentration of that drug in the patient’s bloodstream 
at its highest or lowest?

 In engineering: Where are the greatest stresses on a beam? What is 
the maximum load that a bridge can bear?

 In commerce: How can a company maximise its use of resources? 
What is the minimum quantity of material that could be ordered and 
still get the job done?

In Ian Stewart’s book Seventeen Equations that Changed the World, he says:

‘… calculus is simply an indispensible tool in the engineer’s and 
scientist’s tool kit. More than any other mathematical technique, it has 
created the modern world.’

Source: Ian Stewart, Seventeen Equations that Changed the World 
(Profi le Books, 2012).

21.1   I ncreasing and decreasing functions

In this chapter you will learn:

 about increasing and 
decreasing functions

 the graphical interpretation of 
f ′(x) < 0, f ′(x) = 0 and f ′(x) > 0

 how to fi nd values of x where 
the gradient of a curve is zero

 why the solution of the 
equation f ′(x) = 0 is important

 what stationary points are and 
how to fi nd them

 how to determine whether 
a stationary point is a local 
maximum or minimum point

 how to use calculus to solve 
optimisation problems.

Th e graph shows the height of tides at Gloucester 
Harbor, Massachusetts, over a period of one day.

From midday to 6 p.m. the height of the water is 
increasing; high tide occurs at around 6 p.m., and 
aft er that the height of the water decreases until 
about midnight. Th e same pattern continues into 
the next day.

For any curve or function, you can give a similar 
description of which sections of it are ‘increasing’ 
and which sections are ‘decreasing’.

Calculus allows you to add more detail and 
precision to such a description of functions.

Th e CAPN navigation soft ware (www.thecapn.com)

er you will learn:
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Look at the graph of f (x) = − 1
3 x3 − x2 + 2.

Th e curve is decreasing from left  to right up to the point A(−2, 2
3). It is 

then increasing from A to B(0, 2), and on the right of B it is decreasing.

Using calculus, we can calculate the gradient at various points along the 
curve. Diff erentiating gives f ′(x) = −x2 − 2x, so:

f ′(−3) = −(−3)2 − 2(−3) = −3

f ′(−1) = −(−1)2 − 2(−1) = 1

f ′(2) = −22 − 2 × 2 = −8

 
You learned how to differentiate in Chapter 20.

From these results, you can see that:

 At points where the function is decreasing, the gradient is negative: 
f ′(x) < 0

 At points where the function is increasing, the gradient is positive: 
f ′(x) > 0

A point where f ′(x) = 0 is called a stationary point. Th e points A and B 
on the above graph are stationary points; the tangent to the curve at each 
of these points is a horizontal line, and the rate of change of y against 
x is instantaneously zero at those points. You can think of the curve as 
‘pausing’ for an instant before changing direction. Another name for 
points like A and B is turning points.

–2–4

2

4

y

0
42

–2

–4

–6

A

B

6

8

x

y =–    x3 – x2 + 21
3

Worked example 21.1

Q. Draw a g raph of the function f (x) = x3 + 3x − 2.

 (a) Look at the graph and determine:

  (i) where the function is increasing

  (ii) where the function is decreasing.

 (b) Confi rm your results using calculus.

 (c)  Graph the function g(x) = x3 − 3x − 2. How has the 
graph changed from that of f (x)? Why do you think this 
has happened?

y =– y x3 – 1
3
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A. (a) 

  

TEXAS CASIO

  (i) The function is increasing at every point.
  (ii) There is no part of the curve that is decreasing.

 (b) f (x) = x3 + 3x – 2
  f ′(x) = 3x2 + 3
   As x2 ≥ 0 for all values of x, it means that 3x2 + 3 > 0 for all values 

of x. This tells us that the gradient is always positive and hence 
there is no part of the curve that is decreasing.

 (c) 

  

TEXAS CASIO

  g ′(x) = 3x2 − 3
   In contrast to f (x), the gradient of g(x) can be negative; this 

occurs for x between −1 and 1, so the graph is decreasing 
between the points (−1, 0) and (1, −4). This is confi rmed by 
looking at the derivative g ′(x) = 3x2 – 3; although x2 ≥ 0 
for all values of x, for some values of x subtracting 3 from 
3x2 will lead to a negative value.

Use your GDC to 
draw the graph 
of y = x3 + 3x – 2. 
(See ‘224.2G Graphs’ 
on page 645 of the 
GDC chapter if you 

need to.) 

The curve seems to 
be sloping upwards 
throughout.

Differentiate f(x) one 
term at a time using 
the formula on page 
580. So for each 
term, multiply the 
term by the power, 
and reduce the power 
of x by 1.

Use your GDC to 
draw the graph of 
y = x3 − 3x – 2 on 
the same axes as 
the graph from part 
(a). Just by looking 
at the shape of the 
graph of g(x) you 
can see that the 
gradient is negative 
in some places. Use 
the derivative g ′(x) 
to look for clues to 
the different shapes 
of the f(x) and g(x) 
curves.

continued . . .
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Exercise 21.1

1. Th e graph of the function f (x) = 1 + 3x2 − x3 is shown. State the values 
of x between which the function is increasing and decreasing.

–2–4

5

y

0
42

–5

–10

10

15

x

2. Th e graph of the curve y = (2x + 1)(x − 2)(x + 3) is shown.

–2–4

10

y

x
0

42

–10

–20

20

State the interval of x values for which the function is:

(a) increasing (b) decreasing.

3. Draw the graph of each of the following functions on your GDC 
and, by looking at the graph, determine the interval(s) of x values for 
which the function is:

(i) increasing   (ii) decreasing

(a) f (x) = 3x(x − 8)  (b) f (x) = x(2x + 9)

(c) y = x2 − x − 56  (d) y = x3 + 8x − 2

(e) y = x3 − 12x + 3  (f) y = 2x3 − 3x2 − 12x + 6

(g) g(x) = x3
2

3
3 5x2− 3x2

 
(h) y = x x x

3 2x
3 2

4 1x+ −

exam 
tip

Questions in IB examinations often 
ask for the values of x for which f(x) 
is increasing or decreasing — the y 

value doesn’t matter.
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4. Find the range of values of x for which f (x) = x3 − 6x2 + 3x + 10 is an 
increasing function.

5. A function has equation f (x) = 2 + 9x + 3x2 − x3.

(a) Find f ′(x).

(b) Calculate f ′(−2).

(c) Determine whether f (x) is increasing or decreasing at x = −2.

6. A curve is defi ned by the equation f (x) = x x
3

2

3
3 1x− x .

(a) Find f ′(x).

(b) Calculate:

 (i) f ′(−4)  (ii) f ′(1).

(c) State whether the function is increasing or decreasing at:

 (i) x = −4  (ii) x = 1.

21.2   Stationary  points, maxima and minima

In the previous section, stationary points were defi ned as points where 
a curve has a gradient equal to zero. In this section, you will learn how 
to determine whether a stationary point is a maximum, minimum or 
infl exion point. A point of infl exion is a place where the curve ‘pauses’ 
but then continues in the same direction.

–1

1

A

B

C

D

E

y

x
0

21

–1

2

In the diagram, A, B, C and D are all stationary points.

 A, B and C are turning points, places where the curve changes 
direction.

 A and C are local minimum points, or local minima (plural of 
minimum), where the curve changes from decreasing to increasing.

 B is a local maximum point (plural: maxima), where the curve 
changes from increasing to decreasing.
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Although a local maximum or local minimum is always a turning point, 
it is not necessarily the highest or lowest point on the entire graph; this 
is why the term ‘local’ is used. For instance, the point E has a greater y 
value than the local maximum B; but because the curve does not change 
direction at E, it is not a maximum.

D is a point of infl exion; the curve is increasing before it reaches D, 
then it ‘pauses’ at this point and the gradient is instantaneously zero, 
and then it starts increasing again. Th ere are also points of infl exion 
where the curve is decreasing on both sides. Th e important thing to 
remember is that infl exion points are stationary points which are not 
turning points.

To fi nd the stationary points on a given curve, and to classify each of 
them as a local maximum or minimum, there are several steps that you 
need to work through.

For example, consider the function f (x) = x3 + 3x2 − 9x − 10.

1. It is a good idea to sketch the curve fi rst. Using calculus, you can 
fi nd stationary points without a diagram, but you are less likely to 
make mistakes if you start by drawing the curve on your GDC or 
computer.

–10

–15

–2

5

y

x
0

42

–5

10

15

20

local maximum

local minimum

–4–6

2. Diff erentiate f (x) to fi nd the gradient function:

 d
d

yd
x

 = 3x2 + 6x – 9

exam 
tip

Points of infl exion are interesting to 
explore, but questions about them will 

not be set in examinations.
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3. Stationary points occur where d
d

yd
x  = 0, so solve this equation to fi nd 

the x-coordinates of any stationary points.

 3x2 + 6x − 9 = 0

 From the GDC: x = −3 or x = 1

4. Now that you know the x-coordinates of the stationary points, 
you can fi nd the corresponding y-coordinates using the equation 
of the curve.

 f (x) = x3 + 3x2 − 9x − 10

 f (−3) = (−3)3 + 3(−3)2 − 9(−3) − 10 = −27 + 27 + 27 − 10 = 17

 f (1) = 13 + 3 × 12 − 9 × 1 − 10 = 1 + 3 − 9 − 10 = −15

 So the stationary points of the curve are at (−3, 17) and (1, −15).

5. To determine whether a stationary point is a maximum or a 
minimum (or neither), look at the gradient on either side of the 
stationary point.

 f ′(0.5) = 3(0.5)2 + 6(0.5) − 9 = −5.25 < 0

 f ′(1.5) = 3(1.5)2 + 6(1.5) − 9 = 6.75 > 0

A table/diagram like the following makes it easy to see whether you have 
a maximum or a minimum.

Value of x 0.5 1 1.5

Value of d
d

yd
x

 −5.25 0 6.75

Th e point (1, −15) is a local minimum because the curve changes from 
decreasing to increasing.

f ′(−3.5) = 3(−3.5)2 + 6(−3.5) − 9 = 6.75 > 0

f ′(−2.5) = 3(−2.5)2 + 6(−2.5) − 9 = −5.25 < 0

Make a similar diagram as before:

Value of x −3.5 −3 −2.5

Value of d
d

yd
x

6.75 0 −5.25

Th e point (−3, 17) is a local maximum because the curve changes from 
increasing to decreasing.

This is the equation 
d
d

y
x

 = 0.

This is a quadratic equation, so 
solve using one of the methods 
you met in Chapter 2.

Substitute x = −3 and x = 1 into 
the original equation.

For the point (1, −15), check 
the gradient at x = 0.5 and 
x = 1.5 by substituting these 
values of x into the equation of 
the derivative.

For the point (–3, 17), check 
the gradient at x = –3.5 and 
x = –2.5 by substituting these 
values of x into the equation of 
the derivative.
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For some types of function, you can use the shape of the general graph 
to help you decide whether a stationary point is a maximum or a 
minimum. For example,

 From left  to right on the graph below, a cubic function whose x3 term 
has positive sign will have a maximum followed by a minimum: 

 

 From left  to right on the graph below, a cubic function whose x3 term 
has negative sign will have a minimum followed by a maximum.

 

So, for f (x) = x3 + 3x2 − 9x − 10, since the x3 term has positive sign, you 
know immediately that the stationary point on the left , (−3, 17), is a local 
maximum, while the stationary point on the right, (1, −15), is a local 
minimum.

Summary

To fi nd and classify the stationary points of a function:

1. Sketch the curve on your GDC.

2. Diff erentiate to fi nd the gradient function.

3. Put d
d

yd
x  = 0 and solve the equation for the x-coordinate(s) of any 

stationary points.

4. Use the equation of the curve to fi nd the y-coordinate for each 
stationary point.

5. Check the sign of d
d

yd
x  on either side of each stationary point, to 

determine whether it is a local maximum or minimum.

Using your GDC

It is possible to use your calculator to a greater extent than in the 
example above to fi nd and classify stationary points. See ‘21.2 Finding 
local maximum and minimum points’ on page 690 of the GDC chapter 
for a reminder if you need to. However, to gain a better understanding 
of the mathematics, it is a good idea to practise the traditional calculus 
method described above before relying more heavily on your GDC.
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Worked example 21.2

Q. Consider the function f (x) = x4 − x3 − 12x + 1.

 (a) Find f ′(x).

 (b)  Evaluate f(x) and f ′(x) at the point where x = 2. Is the 
function increasing or decreasing at this point?

 (c)  Calculate the coordinates of the turning points on the curve 
and determine the nature of the points.

Let’s look at how you could use a GDC to fi nd the stationary points of 
f (x) = x3 + 3x2 − 9x − 10.

TEXAS CASIO

TEXAS CASIO

Th ere is a maximum point at (−3, 17)

Th ere is a minimum point at (1, −15)

Enter the equation 
of the curve and 
draw the graph.

Find the maximum 
point. See ‘21.2 
Finding local 
maximum and 
minimum points’ 
on page 690 of 
the GDC chapter 
if you need 

to. 
exam 

tip

Remember that 
your GDC cannot 
differentiate functions; 
so if a question 
asks you to fi nd a 
derivative, that is a 
calculation you will 
always have to do for 
yourself.

Find the minimum 
point.
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A. (a) f ′(x) = 4x3 − 3x2 − 12

 Method 1: 

 (b) When x = 2,
  f (2) = 24 − 23 − 12 × 2 + 1 = −15
  f ′(2) = 4 × 23 − 3 × 22 − 12 = 8

  As f ′(2) > 0, the function is increasing at the point (2, −15).

 (c) 4x3 − 3x2 − 12 = 0

 

TEXAS CASIO

  There is only one solution, x = 1.74

  f (x) = x4 − x3 − 12x + 1
  f (1.74) = (1.74)4 – (1.74)3 − 12 × 1.74 + 1
   When x = 1.74, y = −16.0 (3 s.f.), so there is a stationary 

point at (1.74, −16.0).

Differentiate each term 
separately by multiplying the 
term by the power of x, then 
reducing the power of x by 1.

Using algebra and your 
GDC: for parts (b) and (c), 
we will show two ways of 
answering the question. 

Substitute the value of x = 2 
into the original function, and 
then into the derivative.

To see whether the function 
is increasing or decreasing, 
look at whether the gradient 
is positive or negative. 

At stationary points, 
f ′(x) = 0.

This is a complicated 
equation to solve, so use 
your GDC. (See ‘19.3 (b) 
Solving polynomial 
equations using an equation 
solver’ on page 685 of 
your GDC if you need to, 
and apply the principles 
to solving this cubic 

equation). 

Find the corresponding 
y value by substituting 
x = 1.74 into the original 
equation.

continued . . .

Different
separate
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Value of x 1.5 1.74 2

Value of f ′(x) −5.25 0 8

  (1.74, −16.0) is a minimum point.

 (b) Method 2: (mostly your GDC)

 

TEXAS CASIO

 

  From the GDC:
  f (2) = −15, f ′(2) = 8
  As f ′(2) > 0, the function is increasing at the point (2, −15).

 (c)

 

TEXAS CASIO

  There is a minimum point at (1.74, −16.0).

To determine the nature of 
the stationary point, check 
the sign of the gradient on 
either side of it, and make 
a diagram to show this.

Using some algebra and 
your GDC: use the table of 
coordinates on your GDC 
to fi nd the y-coordinate, 
and the table or graph to 
fi nd the value of dy

dx . 
(If you need a reminder, 
see ‘14.1 Accessing the 
table of coordinates from 
a plotted graph’ on page 
678 and ‘20.1 Finding 
the numerical value of 
the derivative’ on page 
686 and ‘21.1 Finding 
increasing and decreasing 
functions’ on page 689 of 

the GDC chapter.) 

Use the GDC to locate the 
turning point. (See ‘21.2 
Finding local maximum and 
minimum points’ on page 
690 of the GDC chapter if 

you need to.) 

continued . . .
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Exercise 21.2

1. For each of the following functions, draw the graph on your GDC 
and fi nd all the stationary points on the curve, classifying them as 
minimum or maximum points.

(a) y = x2 + 4x   (b) y = 8x − x2

(c) y = x2 − 6x + 5  (d) f (x) = 4 + 3x − x2

(e) g(x) = x3 − x2 − x  (f) h(x) = x3 − 3x − 1

(g) y = 4 + 3x − x3  (h) y = 4x3 − 3x + 5

(i) y = x3 − 4x2 + 4x + 3 (j) f (x) = x5 − 5x −1

2. Use calculus to fi nd and classify the stationary points for all the 
functions in question 1. So, in each case:

 Find the gradient function.

 Equate the gradient function to zero and solve for the x values of 
stationary points.

 Find the corresponding y-coordinates.

 Determine the nature of the stationary points (i.e. whether they 
are maximum or minimum points).

3. A curve has equation y = x3 − 3x2 − 8x − 11.

(a) Find d
d

yd
x

.

Th e points P and Q are the stationary points on the curve.

(b) Find the coordinates of P and Q.

(c) Determine the nature of each of the stationary points.

4. A curve with equation y = 2x5 + 5x2 − 3 passes through the points R 
and S with coordinates (−1, 0) and (0, −3), respectively.

(a) Verify that the points R and S are stationary points on the curve.

(b) Determine the nature of the stationary points.

5. Th e equation of a curve is y = x3 − 4x.

(a) Find d
d

yd
x

.

(b) Hence fi nd the two values of x for which d
d

yd
x

 = 0.

(c) Find the coordinates of the stationary points on the curve.

(d) Determine the nature of each stationary point.

6. If f (x) = x3 − 6x2, fi nd the coordinates of the stationary points and 
determine whether they are maxima or minima.

7. Find the coordinates of the two stationary points on the curve with 
equation y = x3 − 3x. Classify each of the points as a maximum or a 
minimum.
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Learning 

links
21A Using the second  derivative to classify stationary points

You can use the second derivative of a function to distinguish between local 
maxima and local minima.

 If f ″(x) > 0 at a stationary point, then the stationary point is a local minimum.

 If f ″(x) < 0 at a stationary point, then the stationary point is a local maximum.

Take the function f(x) = x3 + 3x2 − 9x − 10 that we investigated in section 21.2.

We saw that there are two stationary points, (−3, 17) and (1, −15).

Differentiating the derivative f ′(x) = 3x2 + 6x − 9 gives the second derivative:

f ″(x) = 6x + 6

Now check:

f ″(−3) = 6 × (−3) + 6 = −12

As −12 < 0, the point (−3, 17) is a maximum.

f ″(1) = 6 × 1 + 6 = 12

As 12 > 0, the point (1, −15) is a minimum.

The following table shows how the gradient of a function’s graph changes around 
a maximum or minimum point, and what this means for the second derivative.

 f(x) graph f ′(x) graph f ″(x) graph

Maximum 
point f(x) = − 3

2
9 4+2x − 92

–1

10

15

20

5

x
0 21

–5
–2–3–4–5

y

From left to right through the 
maximum, the curve changes 
from increasing to horizontal to 
decreasing.

–2

–4

–1

4

6

2

0 1–2–3–4

dy
dx

x

The gradient changes 
from positive to zero 
to negative (its graph 
slopes downward).

–2

–4

–6

–8

–1

2

0 1–2–3–4

d2y
dx2

x

The rate of change of the 
gradient, i.e. the second 
derivative, is negative: 
f ″(x) < 0
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 f(x) graph f ′(x) graph f ″(x) graph

Minimum 
point f(x) = 3

2
3 162x 32 3

–1

5
y

0 2 3 4 51
–5

–10

–15

–20

x

From left to right through the 
minimum, the curve changes 
from decreasing to horizontal to 
increasing.

–2

–4

–6

–1

2

4

0 1 2 3

dy
dx

x

The gradient changes 
from negative to zero 
to positive (its graph 
slopes upward).

–2
–0.5

4

6

2

8

0 0.5 1–1

d2y
dx2

x
1.5 2

The rate of change of the 
gradient, i.e. the second 
derivative, is positive: f ″(x) > 0

continued . . .

21.3   Optimisation

A group of friends are preparing for a party. Some of them are making 
candy boxes from 18 cm squares of coloured card. Th e boxes all have 
square bases but diff erent depths. What is the volume of the boxes that 
they are making?

Zaira makes a shallow box, 1 cm deep, like this:

1 cm

16 cm

Th e volume of Zaira’s box 
is 1 × 16 × 16 = 256 cm3.

Mike makes a box that is deeper, with a depth of 4 cm:

4 cm

10 cm

Th e volume of Mike’s box 
is 4 × 10 × 10 = 400 cm3.

Polli makes her box like this; it has a volume of 422.5 cm3.

2.5 cm

13 cm
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Worked example 21.3

Q. How can the friends design a box made from an 18 cm by 18 cm 
piece of card with the greatest possible volume?

A. 

 

18 cm

x cm

(18 – 2x) cm

x cm

(18 – 2x) cm

 V = (18 − 2x)(18 − 2x)x

TEXAS CASIO

To fi nd the box with the 
largest volume, visualise 
the box as in the diagram, 
and then use algebra to 
generalise the problem.

By cutting out or folding 
an x cm square piece at 
each corner of the 18 cm 
square card, you can 
make a box that is x cm 
high, with a square base 
of side length (18 – 2x) cm.

We know that the volume 
of a box = length × width × 
height.

In this case, the height 
(depth) is x cm and the 
length and width are both 
(18 − 2x) cm.

To fi nd the value of x that 
will give the maximum 
volume, graph this equation 
on a GDC (see ‘21.2 
Finding local maximum and 
minimum points’ on page 
690 of the GDC chapter if 

you need to.) 

Even though the size of the card used stays the same, the volume of the 
box seems to change depending on the depth of the box. How can the 
friends design a box made from an 18 cm by 18 cm piece of card with the 
greatest possible volume?

Th is is an optimisation problem, where you want to fi nd the most 
effi  cient use of the resources that you have. In these circumstances we 
need to create a function to represent the situation and then plot the 
graph of this function to fi nd the local maximum. In other examples, you 
might want to fi nd the smallest value and you would plot a graph of the 
function and locate the local minimum.
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 From GDC: coordinate of local maximum is (3, 432). So, x = 3, 
y = 432. So the box with the greatest volume, made from an 
18 cm square of card, is one that has a depth of 3 cm and a length 
and width of 12 cm, giving a volume of 432 cm2.

There is a clear maximum 
point on the curve. Use 
your GDC to fi nd the 
coordinates of the point.

continued . . .

Exercise 21.3

1. Sierra has a 20 cm by 20 cm square piece of card. She wants to make 
an open-top box out of the card. If she wants her box to have the 
maximum possible volume, fi nd the dimensions of this box.

2. Th e sum of two positive integers is 13. Find the maximum product 
you can get from the pair of integers.

3. A rectangle has a perimeter of 24 cm. Calculate the dimensions of 
the rectangle which will result in the maximum area. You may 
assume that the lengths of the sides of the rectangle can be integer 
values only.

4. Th e area of a rectangle is 18 cm2. Calculate the dimensions which will 
result in the minimum perimeter. You may assume that the lengths of 
the sides of the rectangle can be integer values only.

 Using calculus to solve optimisation problems
Problems asking for maximum or minimum solutions occur in many 
diff erent contexts. For instance, the Laff er curve, fi rst proposed by the 
American economics professor Arthur Laff er, suggests that there is 
a maximum amount of tax that can be imposed on the citizens of a 
country. If a government asks its citizens for more than 60% of their 
income in tax, the government will lose revenue rather than gain it.

Total
tax

revenue

Maximum tax revenue
(around 60% tax rate)

Marginal tax rate (%)
10 20 30 40 50 60 70 80 90 100

There is
point on
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 In business, it is useful to be able to predict whether you can make more 
profi t by selling many things cheaply or fewer things at a higher price.

 In manufacturing, optimisation can help a company fi nd the break-
even price of an item, that is, the point where production costs and 
revenue would be equal.

 Packaging companies need to calculate the most economical 
dimensions for diff erent shapes and styles of package.

 Doctors want to fi nd out the most eff ective dosage for a medicine, 
and when the drug would be at its highest concentration in a patient’s 
bloodstream.

Problems like these can all be solved by:

 fi nding an equation that describes the problem

 using calculus to look for a maximum or minimum point.

To solve an optimisation problem, work through the following steps:

1. Read the question carefully and make sure you understand it. You 
may need to read it more than once to absorb all the information.

2. Draw a diagram if possible.

3. Formulate an equation that links the variables of interest. With the 
techniques we have learned so far, you can use only two variables.

4. Diff erentiate the equation to fi nd the gradient function.

5. Set the gradient function equal to zero to fi nd the stationary points.

6. Solve the equation for the stationary points and check whether you 
have a stationary point of the type you are seeking (maximum or 
minimum).

7. Use your results to give your answer to the original problem.

Let’s use the steps above to solve the following problem.

A zoo needs a rectangular enclosure for some small animals. Th e 
enclosure can use one wall of an existing building, and there are 
80 metres of fencing panels available for the remaining three sides. 
Find the maximum area of the enclosure and its dimensions.

1. Read the question. Why does it mention the ‘remaining three sides’?

2. Draw a diagram and mark in the information from the question:

y

xx

existing wall

Not every step will be needed for 
every problem, but the sequence of 
steps is always the same.

hint
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Worked example 21.4

Q. Myra and Salim (from Worked example 20.8) are looking 
again at their Business Studies project of scarf manufacturing. 
Th ey now calculate that their fi xed costs are $25, which will 
remain the same regardless of how many scarves they make. 
Th e material for each scarf costs $8, but this will decrease by 
$0.20 for each additional item made, as their supplier will give 
them a discount if they buy more material. At what production 
level will the total costs reach a maximum, and what is this 
maximum cost?

3. Th e question asks for an area. Th e area of the enclosure is A = x × y.

 Th is equation has three variables, A, x and y; however, the question 
gives you enough information to make a link between x and y, which 
would allow the equation to be simplifi ed.

 Since there is 80 m of fencing available, the diagram shows that 
x + y + x = 80. So you can write y = 80 − 2x, and now,

 A x
x x

×x
= x

( )x−
80 2 2

4. Diff erentiating gives d
d

Add
x

 = 80 − 4x.

5. For stationary points, d
d

Add
x

 = 0, that is, 80 − 4x = 0.

6. Solving 80 − 4x = 0 gives x = 20.

 If x = 20, then y = 80 − 2 × 20 = 40.

7. Th e maximum area of the enclosure is 40 × 20 = 800 m2, and its 
dimensions are 40 m × 20 m.

Using your GDC, you could follow steps 1 to 3 as before, and then graph 
the equation A = 80x − 2x2 on your GDC and fi nd the coordinates of the 
maximum point directly:

TEXAS CASIO

 

GDC

See ‘21.2 Finding local maximum 
and minimum points’ on page 690 

of the GDC chapter if you need 

a reminder. 
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 Worked example 21.5

Q. Th e formula for the rate P at which a car’s engine is 
working is:

 P = 12v + 5000
v

 where v is the speed of the car in m s−1.

 (a) Find d
d

P
v

.

 (b)  Use your expression in (a) to calculate the 
speed of the car when the engine is working at 
its most effi  cient.

 (c) Confi rm your result in (b) with a graph.

A. Let x be the number of scarves made; then
 C(x) = 25 + x(8 − 0.2x)
 C(x) = 25 + 8x − 0.2x2

 C ′(x) = 8 − 0.4x

 8 − 0.4x = 0
 x = 20

TEXAS CASIO

 When x = 20, C(x) = 105.
 The maximum cost, $105, occurs when they make 20 scarves.

Total cost = fi xed costs + 
variable costs, where the 
variable costs depend 
on the number of items 
produced.

Differentiate to fi nd the rate 
of change of total cost with 
respect to number of items.

Solve the equation d
d
C
x  = 0 

to fi nd stationary points.

Check that the stationary 
point is a maximum, 
and fi nd its y-coordinate. 
You can use the GDC 
for this. (See ‘21.2 Finding 
local maximum and 
minimum points’ on 
page 690 of the 
GDC chapter if you 
need to.) 

continued . . .
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A. (a) P = 12v + 5000v −1 

  

d
d

P
v

 = 12 − 5000v −2 = 12
5000

2
−

v

 (b) 
d
d

P
v

 = 0

  

12
5000

0

12
5000

2

2

− =

=

v

v

  From GDC: v = 20.4
   The engine is at its most effi  cient when the 

car’s speed is 20.4 m s−1.

 (c) 

200

300

100

P

0 20 3010

400

500

600

700

800

40 50

local minimum
(20.4125, 489.8979)

v

Rewrite the equation as a sum of 
powers of v.

Differentiate with respect to v.

‘Most effi cient’ tells you that this is 
an optimisation problem, so look for 
stationary points. 

Use your GDC to solve the equation, 
(see ‘19.2 Solving unfamiliar equations’ 
on page 684 of the GDC chapter if you 
need to.) 

Drawing the graph confi rms that 
v = 20.4 is a local minimum; that is, 
the engine uses the least effort at 
this speed. 

continued . . .

Rewrite
powers
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Exercise 21.4

1. Th e profi t function of a certain manufacturing company is:

P = 25 + 120q − 4q2,

where P is the profi t in thousands of pounds and q is the output level 
in number of units produced.

(a) Find d
d

P
q

.

(b) Determine the value of q for which d
d

P
q

= 0.

(c) Hence fi nd the maximum profi t, Pmax.

2. Th e total cost function of a certain manufacturing company is 
given by:

C = 3800 − 240n + 1.5n2

where C is the total cost in thousands of dollars and n is the number 
of items produced.

(a) Determine the value of n which minimises the total cost.

(b) Use calculus to justify your reason for deciding that your answer 
is the minimum rather than the maximum value.

3. Th e diagram shows a 20 cm by 20 cm square piece of card. A square 
of side x cm is cut from each corner of the card to make an open box 
with a square base and a height of x cm.

20 cm

x cm

(20 – 2x) cm

x cm

(20 – 2x) cm

(a) Show that the volume, V cm3, of the box can be written as

V = 4x3 − 80x2 + 400x

(b) Find d
d
V
x

.

(c) Determine the value of x for which the volume of the box is 
maximum.

(d) Hence fi nd the dimensions of the box that give the maximum 
volume. Calculate the corresponding volume.

63321 Stationary points and optimisation



4. Melissa is designing an open-topped toy box out of cardboard. Th e 
base of the box is rectangular with length three times as long as the 
width. Th e total surface area of the fi ve faces of the box is 7488 cm2.

h cm

3x cm
x cm

(a) Taking the width of the box to be x cm and the height to be h cm, 
show that:

3x2 + 8xh = 7488

(b) By expressing h in terms of x, show that the volume, V, of the box 
can be written as:

V = 2808 9
8

3
x x−

(c) Find d
d
V
x

.

(d) Hence determine the value of x corresponding to the maximum 
volume of the box.

(e) Find the dimensions of the box that give the maximum volume.

(f) State the maximum volume of the box.

5. Th e total revenue function of a company is:

R = 320n − 4n2

where R is the total revenue in thousands of dollars and n is the 
number of items produced.

(a) Find d
d

R
n

.

(b) Hence fi nd the value of n which maximises the total revenue. 
Justify your reason for deciding it is the maximum.

(c) Calculate the maximum total revenue.

6. Josephine has bought a piece of rectangular card with a perimeter of 
120 cm. She wants to roll the rectangle into a cylinder with the largest 
possible volume.

h

2ϖr

h

r
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(a) If she labels the piece of card as shown in the diagram, show that 
h + 2πr = 60.

(b) Th e volume of a cylinder is given by V = πr2h. Use your result 
from (a) to show that V can also be written as V = πr2(60 − 2πr).

(c) Find d
d
V
r

.

(d) Calculate the value of r that will give Josephine the greatest 
volume for her cylinder.

(e) Find the volume of this largest cylinder.

Summar y

You should know:

 how to identify increasing and decreasing functions

 how to interpret graphically the gradient f ′(x)

 –  at points where the function is decreasing, the gradient is negative, f ′(x) < 0

 –  at points where the function is increasing, the gradient is positive, f ′(x) > 0

 –  at points where the gradient is equal to zero, f ′(x) = 0, the point is a stationary point

 how to fi nd values of x where the gradient of a curve is zero

 that a stationary point can be

 – a turning point

   that is a local minimum (the curve changes from decreasing to increasing)

   that is a local maximum (the curve changes from increasing to decreasing)

 –  a point of infl exion (where the curve continues in the same direction, i.e. points of infl exion are 
stationary points that are not turning points)

 how to fi nd a stationary point and identify what type of stationary point it is

 that optimisation problems require you to construct an equation, the local maximum or minimum 
of which is the solution to the optimisation problem

 that the solution of the equation f ′(x) = 0 is important because you can use it to solve optimisation 
problems by fi nding a local maximum or minimum

 how to use calculus to solve optimisation problems that involve maximising or minimising a certain 
quantity.
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Mixed examination practice
Exam-style questions

1. Th e following graph shows the function with equation y = x3 − 6x2 + 3x + 10.

–10

–15

–2

5

y

x
0

2

–5

4 6

10

15

 State  the values of x for which the function is:

(a) increasing

(b) decreasing.

2. A function is defi ned as f (x) = 7x3 − 12x + 3.

(a) Find f ′(x).

(b) Calculate f ′(4).

(c) Determine whether f (x) is increasing or decreasing at x = 4.

3. Th e curve C with equation y = 3 + 6x2 − 4x3 passes through the points P(0, 3) and Q(1, 5).

(a) Find d
d

yd
x

.

(b) Verify that the points P and Q are stationary points on the curve.

(c) Determine the nature of each stationary point.

4. Th e equation of a curve is y = 2x3 − 9x2 − 24x + 3.

(a) Find d
d

yd
x

.

(b) Hence fi nd the two values of x for which d
d

yd
x

 = 0.

(c) Find the coordinates of the stationary points on the curve.

(d) Determine the nature of each stationary point.

Mix
E
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 5. Th e equation of a curve is given by f (x) = 5 + 6x2 − x3.
 Th e points R and S on the curve are the minimum and maximum points, respectively.
 Find the coordinates of R and S. Justify your answer using calculus.

 6. Francis the farmer plans to section off  part of a fi eld to form a rectangular enclosure. He has 200 m of 
fencing material. Th e enclosure will use one wall of an existing building, and the remaining three sides 
will be fenced. Find the maximum area of the enclosure and its corresponding dimensions.

 7. Liam is designing a drinks can for his Technology project. Th e cylindrical can should hold 330 cm3 of 
fl uid. Liam wants to minimise the material needed for producing the can.

h cm

r cm

 Use calculus to determine the dimensions of the can (radius r and height h) that will minimise the 
surface area.

 8. A farmer has 800 m of fencing material. Determine the dimensions of the rectangular enclosure that 
will maximise the fenced area. Work out the maximum area of the enclosure.

 9. A box with a square base is to be designed to have a volume of 8000 cm3.

(a) Find the dimensions of the box which will minimise the amount of material used.

(b) Determine the minimum surface area of the box.

10. Repeat question 9 for an open-topped, square-based box of the same volume.

Past paper questions

1. A function is represented by the equation:

f (x) = ax2 + 4
x

 − 3

(a) Find f ′(x). [3 marks]

 Th e function f (x) has a local maximum at the point where x = −1.

(b) Find the value of a. [3 marks]

 [Total 6 marks]
[Nov 2007, Paper 1, Question 15] (© IB Organization 2007 )
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2. A football is kicked from a point A(a, 0), 0 < a < 10, on the ground towards a goal to the right of A.

 Th e ball follows a path that can be modelled by part of the graph:

y = −0.021x2 +1.245x − 6.01, x ∈ !, y ≥ 0.

 x is the horizontal distance of the ball from the origin
 y is the height above the ground
 Both x and y are measured in metres.

(a) Using your graphic display calculator or otherwise, fi nd the value of a. [1 mark]

(b) Find d
d

yd
x

. [2 marks]

(c) (i)  Use your answer to part (b) to calculate the horizontal distance the ball has travelled 
from A when its height is a maximum.

 (ii) Find the maximum vertical height reached by the football. [4 marks]

(d) Draw a graph showing the path of the football from the point where it is kicked to the 
point where it hits the ground again. Use 1 cm to represent 5 m on the horizontal axis 
and 1 cm to represent 2 m on the vertical scale. [4 marks]

 Th e goal posts are 35 m from the point where the ball is kicked.

(e) At what height does the ball pass over the goal posts? [2 marks]

 [Total 13 marks]
[May 2007, Paper 2, Question 3 (ii)] (© IB Organization 2007 )

3. A farmer has a rectangular enclosure with a straight hedge running down one side. Th e area of the 
enclosure is 162 m2. He encloses this area using x metres of the hedge on one side as shown on the 
diagram below.

x

diagram not to scale

(a) If he uses y metres of fencing to complete the enclosure, show that y = x + 324
x

. [3 marks]

 Th e farmer wishes to use the least amount of fencing.

(b) Find d
d

yd
x

. [3 marks]

(c) Find the value of x which makes y a minimum. [3 marks]

(d) Calculate this minimum value of y. [2 marks]

2. A fo

 Th e
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(e) Using y = x + 324
x

 fi nd the values of a and b in the following table.

x 6 9 12 18 24 27 36
y 60 45 39 a 37.5 b 45

(f) Draw an accurate graph of this function using a horizontal scale starting at 0 and taking 2 cm 
to represent 10 metres, and a vertical scale starting at 30 with 4 cm to represent 
10 metres. [5 marks]

(g) Write down the values of x for which y increases. [2 marks]

 [Total 20 marks]
[Nov 2006, Paper 2, Question 5] (© IB Organization 2006 )

4. A closed rectangular box has a height y cm 
and width x cm. Its length is twice its width. 
It has a fi xed outer surface area of 300 cm2.

(a) Show that 4x2 + 6xy = 300. [2 marks]

(b) Find an expression for y in terms of x. [2 marks]

(c) Hence show that the volume V of the box is given by V = 100 4
3

3x x . [2 marks]

(d) Find d
d
V
x

. [2 marks]

(e) (i) Hence fi nd the value of x and of y required to make the volume of the box a maximum.

 (ii) Calculate the maximum volume. [5 marks]

 [Total 13 marks]
[May 2008, Paper 2, TZ1, Question 5(ii)] (© IB Organization 2008)

5. Th e function f (x) is such that f ′(x) < 0 for 1 < x < 4. At the point P(4, 2) on the graph of f (x) the 
gradient is zero.

(a) Write down the equation of the tangent to the graph of f (x) at P. [2 marks]

(b) State whether f (4) is greater than, equal to or less than f (2). [2 marks]

(c) Given that f (x) is increasing for 4 ≤ x < 7, what can you say about the point P? [2 marks]

 [Total 6 marks]
[May 2008, Paper 1, TZ2, Question 15] (© IB Organization 2008)

[2 marks]

y cm

x cm
2x cm
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