Answers

Answers are given to 3 s.f. unless the question specifies otherwise.

Chapter 1

Exercise 1.1

1. (a) T
(b) T
(c) $\mathrm{F} ; \sqrt{17}$ is irrational
(d) F; 1.51 can be written as 151/100
(e) T
(f) F; all irrational numbers are real numbers
(g) F; the sum of two integers is always an integer
(h) T
2. Answers may vary, for example:
(a) -6
(b) $\frac{25}{4}$
(c) $\sqrt{5}$
(d) 8
3.

4. (a) $-5.1,-2.5,-2,0, \frac{6}{7}, \sqrt{2}$, $\sqrt{3}, 12$
(b) 12,0
(c) $12,-2,0$
(d) $12,-5.1,-2,0, \frac{6}{7},-2.5$
(e) $\sqrt{2}, \sqrt{3}$; irrational numbers
5. (a) Natural
(b) Natural, integer, rational
(c) Negative integer
(d) Irrational
(e) Natural number

Exercise 1.2

1. (a) 169 cm
(b) 1 h 45 min
(c) 3200
(d) 220 AUD
(e) $628 \mathrm{~m}^{2}$
(f) 75 kg
2. (a) 50
(b) 200
(c) 320
(d) 2150
(e) 20460
3. (a) 300
(b) 2000
(c) 100
(d) 67900
(e) 708500
4. (a) 2
(b) 32
(c) 13
(d) 113
5. (a) $43.5 \mathrm{~cm}^{2}$
6. $132 \mathrm{~cm}^{3}$
(b) 3.18 cm
(c) 8.60 cm

Exercise 1.5

1. (a) $72 ; 75.69$
(b) $60 ; 72.513 \ldots$
(c) $8 ; 7.34496 \ldots$
2. (a) (i) $138.18 \mathrm{~cm}^{2}$;
(ii) $138.2 \mathrm{~cm}^{2}$;
(iii) $138 \mathrm{~cm}^{2}$
(b) $3.18 \mathrm{~cm}^{2}$
3. (a) $m=30, n=10$, $p=100$ (to 1 s.f.)
(b) 6.82
(c) 5.573868149
(d) 1.25
4. (a) $110304 \mathrm{~m}^{2}$
(b) When rounding either of the values to 1 s.f., he probably dropped a zero from the rounded value.

Exercise 1.6

1. (a) 2.65%
(b) 7.32%
(c) 6.11%
(d) 31.8%
2. (a) $354.78 \mathrm{~cm}^{3}$
(b) 3.52%

Exercise 1.7

1. (a) 6
(b) 4
(c) -3
(d) 6
(e) 0
2. (a) 12500
(b) 3080
(c) 288000000
(d) 0.0421
(e) 0.00972
(f) 0.00000838
3. (a) 6.21×10^{4}
(b) 2.1×10^{3}
(c) 9.84×10^{7}
(d) 5.2×10^{1}
4. (a) 7.27×10^{-1}
(b) 3.19×10^{-2}
(c) 2.57×10^{-6}
(d) 4.08×10^{-4}
5. (a) $398 \times 10^{1}, 0.17 \times 10^{3}$,
$370 \times 10^{2}, 0.02 \times 10^{2}$
(b) $3.98 \times 10^{3}, 1.7 \times 10^{2}$, $3.70 \times 10^{4}, 2 \times 10^{0}$
(c) $3.8 \times 10^{-5}, 2.4 \times 10^{-3}$, $2 \times 10^{0}, 1.2 \times 10^{2}, 1.7 \times 10^{2}$, $3.98 \times 10^{3}, 3.70 \times 10^{4}$
6. (a) 3.17×10^{10}
(b) 9.89×10^{-2}
(c) 4.56×10^{-9}
(d) 1.54×10^{-6}
(e) 8.12×10^{4}
(f) 3.44×10^{-7}
7. (a) 3.90×10^{3}
(b) 3.90×10^{3}
(c) 2.65×10^{0}
(d) 5.74×10^{6}
8. (a) 33 min
(b) 12 min
(c) 79 min
9. 1270 times (to 3 s.f.)

Exercise 1.8

1. (a) 395 s
(b) 9 min 22 s
(c) 3 d 6 h
(d) 1 h 48 min 20 s
(e) 17595 min
(f) 22030 s

Exercise 1.9

1.

City	Miami	Riga	Milan	Bahrain	Lima	Perth	Moscow
Celsius $\left({ }^{\circ} \mathbf{C}\right)$	27.8	-2	7	18.3	25	32.2	-12
Fahrenheit $\left({ }^{\circ} \mathbf{F}\right)$	82	28.4	44.6	65	77	90	10.4

Exercise 1.10

1. (a) $38 \mathrm{~km} \mathrm{~h}^{-1}$
(b) 7.19 h
(c) 29.3 km
2. (a) $2.625 \mathrm{~km} \mathrm{~h}^{-1}$
(b) $2.64 \mathrm{~km} \mathrm{~h}^{-1}$; faster
(c) $2.63 \mathrm{~km} \mathrm{~h}^{-1}$

Exercise 1.11

1. (a) 3.5 m
(b) 2760 mm
(c) 4.8 km
(d) 35200 cm
2. (a) 5800 g
(b) 0.03 kg
(c) 1.26 g
(d) 1000000 mg
3. (a) $45000 \mathrm{~cm}^{2}$
(b) $0.0685 \mathrm{~m}^{2}$
(c) $1.4 \times 10^{6} \mathrm{~m}^{2}$
(d) $1.2 \mathrm{~cm}^{2}$
4. (a) $1.2 \times 10^{7} \mathrm{~cm}^{3}$
(b) $0.024 \mathrm{~m}^{3}$
(c) $1300 \mathrm{~mm}^{3}$
(d) $5 \times 10^{5} \mathrm{~cm}^{3}$
5.

(a) 7.91
(b) 3950 ml
(c) $83300 \mathrm{~cm}^{3}$
(d) $687 \mathrm{~cm}^{3}$
6. (a) (i) $70000 \mathrm{~cm}^{2}$
(ii) $7 \mathrm{~m}^{2}$
(b) (i) $8.21 \times 10^{5} \mathrm{~cm}^{3}$
(ii) $0.821 \mathrm{~m}^{3}$
(c) $33.1 \mathrm{~cm}^{2}$
7. (a) 38
(b) 16 cm
8. 1250
9. (a) 53
(b) $20 \mathrm{~cm}^{3}$
10. (a) $255 \mathrm{~m}^{2}$
(b) $20.4 \mathrm{~m}^{3}$

Mixed examination

 practice 1Exam-style questions 1
1.

2.

3. (a) 2, natural number
(b) $4 \frac{8}{9}=4.8$, rational number
(c) 2, natural number
(d) $42.7256 \ldots$, irrational number
(e) 10 , natural number
(f) -36 , integer
(g) $-\frac{101}{3}$, rational number
(h) -4 , integer
4. (a) $40.0 \mathrm{~cm}^{2}$
(b) $8.4 \mathrm{~cm}^{2}$
(c) 6.4 m
5. (a) $R=20, r=10, \pi=3$ (1 s.f.)
(b) $A \approx 900$
(c) 788
6. (i) 2.7
(ii) 2.66
7. 9.09×10^{6}
8. (a) $958 \mathrm{~kg} \mathrm{~m}^{-3}$ (b) $10^{6} \mathrm{~cm}^{3}$
(c) 9.58 g
9. (a) 11305 kg
(b) $4.42 \times 10^{-6} \mathrm{~m}^{3}=4.42 \mathrm{~cm}^{3}$

Past paper questions 1

1. (a) 1.265×10^{-1}
(b) 0.13
(c) 2.77%
2. (a) 144.75
(b) 1.4475×10^{2}
(c) (i) $96 \mathrm{~m}^{2} \quad$ (ii) 6.67%

Chapter 2

Exercise 2.1

1. (a), (d), (e) and (f) are linear; (b) and (c) are not
2. B and D

Exercise 2.2

1. (a) $y=x+4$
(b) $y=-3 x+7$
(c) $y=\frac{1}{9} x-\frac{15}{9}$
(d) $y=-\frac{5}{2} x+\frac{15}{2}$
(e) $y=x-\frac{10}{11}$
(f) $y=\frac{1}{3} x-\frac{13}{6}$
(g) $y=-\frac{3}{4} x+\frac{27}{2}$
(h) $y=\frac{15}{4} x+1$
(i) $y=\frac{2}{9} x+7$
2. (a) $5 x-y+4=0$
(b) $x-2 y-5=0$
(c) $3 x+2 y-6=0$
(d) $3 x-4 y-10=0$
(e) $9 x-2 y=0$
(f) $5 x+2 y-1=0$

Exercise 2.3

1. (a) $m=1$
(b) $z=70$
(c) $y=-1$
(d) $x=16$
2. (a) $m=\frac{10}{3}$
(b) $f=0.2$
(c) $x=2.8$
3. (a) $x=\frac{1}{8}$
(b) $z=4.25$
(c) $y=19$
4. (a) $x=13$
(b) $y=5$
(c) $m=2$
(d) $x=-\frac{1}{16}$

Exercise 2.4

1. (a) $x=8, y=13$
(b) $x=3, y=4$
(c) $x=0.5, y=4$
(d) $x=9, y=8$
(e) $x=-0.538, y=-2.77$
(f) $x=2.81, y=0.484$
(g) $x=3.6, y=1.6$
(h) $x=0.4, y=2.47$
2. (a) $s=5.14, t=-3.79$
(b) $s=2.83, t=-1.16$
(c) $s=-1.60, t=-3.49$
(d) $s=197, t=33.3$

Exercise 2.5

1. (a) $3 m+b=85$
(b) $m=22, b=19$
2. (a) $6 s+2 t=100$
(b) Snickers: 6 AED; Twix: 32 AED
3. $x+y=97$ and $x-y=23 ; 60$ and 37
4. (a) $2 c+7 d=128.91$
(b) CDs: $£ 11.99 ;$ DVDs: $£ 14.99$
5. Batteries: $£ 2.99$; calculators: $£ 14.50$
6. (a) $3 x+4 y=2987,2 x+5 y=$ 3123 (where x is the price of an easy-click laptop and y is the price of a smoothtab laptop)
(b) Easy-click: \$349; smoothtab: \$485
7. $\$ 345$
8. 9 shorter and 6 longer questions
9. (a) $S\left(-\frac{7}{3}, 0\right)$, and $T(0,7)$
(b) $\mathrm{R}(-2,1)$

Exercise 2.6

1. (a), (b), (d), (f), (h) and (i)
2. A and D
3. (a) Max
(b) Min
(c) Min
(d) Max
4. (a) $x^{2}+x=0$
(b) $x^{2}-2 x-3=0$
(c) $4 x^{2}+x-4=0$
(d) $x^{2}-5 x-6=0$
(e) $x^{2}+5 x-15=0$
(f) $x^{2}-6 x-7=0$

Exercise 2.7

1. (a) $1,-1.33$
(b) $2,0.571$
(c) $-2.5,0.667$
(d) $-1.12,10.7$
(e) $14.8,0.203$
(f) $-0.805,1.74$
2. (a) $2 x^{2}+3 x-2=0 ; 0.5,-2$
(b) $3 x^{2}+11 x-9=0 ; 0.689$, -4.36
(c) $x^{2}+7 x-13=0 ; 1.52,-8.52$
(d) $6 x^{2}+7 x-3=0 ; 0.333,-1.5$
(e) $4 x^{2}-5 x-8=0 ; 2.17,-0.921$
(f) $9 x^{2}+x-4=0 ;-0.724$, 0.613
3. (a) $2.70,-1.16$
(b) $0.614,-2.24$
(c) $4.11,-0.608$
(d) $3.95,0.198$
(e) $0.414,-2.41$
(f) $1.26,-1.59$

Exercise 2.8

1. $n^{2}+n-306=0 ; 17$ and 18
2. (a) $x^{2}+7 x-60=0$
(b) 5 cm and 12 cm
3. (a) $x^{2}+x-156=0$
(b) $x=12$
(c) Parallel sides 12 cm and 18 cm , height 10 cm
4. (a) 1.24 s and 2.97 s
(b) 5.46 s

Mixed examination

 practice 2Exam-style questions 2

1. $x=6$
2. (a) $x=-1, y=2$
(b) $x=1.24, y=2.33$
(c) $x=-2.91, y=1.57$
3. (a) $0.286,0.333$
(b) $4.85,-1.85$
(c) $4.92,-6.92$
(d) $8.72,-1.72$
(e) $1.61,-0.811$
4. (a) $4 x+3 y=5529,2 x$ $+5 y=6751$
(b) Bracelet: 528 INR; pendant: 1139 INR
5. (a) $m+c=-5,4 m+c=4$
(b) $m=3, c=-8$
(c) No
6. (a) $a+820 b=106.24$,
$a+650 b=85.84$
(b) $a=7.84, b=0.12$
(c) $£ 97.24$
7. 20 m by 38 m
8. (a) $1.22 \mathrm{~s}, 3.56 \mathrm{~s}$
(b) 4.78 s

Past paper questions 2

1. (a) $6 b+9 m=23.40$
(b) $b=1.80, m=1.40$
(c)
m

2. (a)

y-intercept $=-3$;
x-intercept $=2.2$
(b)

(2.45, 2.11)

Chapter 3

Exercise 3.1

1. (c), (d) and (f)
2. (a) $3 ; 14,17,20$
(b) $-3 ;-7,-10,-13$
(c) $-33 ; 251,218,185$
(d) $21 ; 252,273,294$
(e) $4.2 ; 41.3,45.5,49.7$
(f) $\frac{3}{4} ; \frac{11}{4}, \frac{7}{2}, \frac{17}{4}$
(g) $\frac{2}{3} ; \frac{18}{7}, \frac{68}{21}, \frac{82}{21}$
(h) $-x-9 ;-x-20,-2 x-29$, $-3 x-38$

Exercise 3.2

1. (a) 115,163
(b) 435,855
(c) $58,-124$
(d) 142,340
(e) 105,337
(f) $970.8,768$
(g) $-372,-820$
(h) $428.4,723.6$
(i) $\frac{134}{35}, \frac{197}{35}$
2. (a) 20,32
(b) 149, 226
(c) 67,191
(d) $-88,-116$
(e) $-88,-250$
(f) $-267,-998$
(g) 3.51, 6.4
(h) $\frac{37}{18}, \frac{50}{9}$
(i) $17 x+62,24 x+97$

Exercise 3.3

1. (a) 3
(b) 8
(c) 11
(d) -2.3
(e) -13.65
(f) 8
(g) 26
(h) -2.1
(i) -1.9
(j) 0.563
2. (a) 36
(b) 27
(c) 46
(d) 39
(e) 55
(f) 100
(g) 46
(h) 75
(i) 46
(j) 58
3. (a) 12
(b) 19
(c) 400
(d) 198
(e) 56
(f) 188
(g) 1990
(h) 88
(i) 205
(j) 60
4. (a) $u_{1}+4 d=9, u_{1}+10 d=45$
(b) $u_{1}=-15, d=6$
(c) 279
5. (a) $u_{1}=64, d=18$
(b) 406
6. (a) $u_{1}=172, d=-17$
(b) -440
7. (a) $d=-6, u_{1}=-34.93$
(b) -268.93
(c) No

Exercise 3.4

1. (a) 47
(b) 13 months
2. (a) 100
(b) In the 20th week
3. (a) 97 minutes
(b) After the 19th week
(c) 161 minutes
4. (a) 132 tonnes
(b) In the 16th year
5. (a) 800 rupees
(b) In the 36th month

Exercise 3.5

1. (a) 710
(b) 6576
(c) -696
(d) -2300
(e) 3259.2
(f) -3438
2. (a) 32
(b) 24
(c) 28
(d) 24
(e) 80
(f) 310

Exercise 3.6

1. (a) 500
(b) 3042
(c) 5565
(d) -3010
(e) 50
(f) 500
(g) -1305
(h) -3565.65
2. (a) 558
(b) 2270
(c) 6006
(d) -14840
(e) -1260
(f) 1372.5
(g) -341.25
(h) 794.592

Exercise 3.7

1. (a) 2376
(b) 2168
(c) -11940
(d) 2207.52
(e) $\frac{129}{4}=32.25$
2. (a) 20,2750
(b) 32, 17136
(c) $19,363.85$
(d) $30,-4605$
(e) $31,1666.25$
3. (a) 3240
(b) 14630
(c) 14850
(d) 4215
(e) 16830
4. (a) 97
(b) 17
(c) 17140
5. (a) 1700
(b)

$$
S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right) ;
$$

i.e. $5800=\frac{n}{2}(2 \times 28+6(n-1))$

$$
\begin{aligned}
& =28 n+3 n(n-1) \\
& =25 n+3 n^{2}
\end{aligned}
$$

(c) 40

Exercise 3.8

1. (a) €1000
(b) €5950
(c) $€ 12,650$
2. (a) $u_{10}=u_{1}+(n-1) d$

$$
=3+(10-1) \times 2
$$

(b) 440
(c) 9th week
3. (a) $\$ 103$
(b) $\$ 10,816$
4. (a) 40,500 nairas
(b) 169,500 nairas

Exercise 3.9

1. (b), (d), (e), (g) and (h)
2. (a) $32,64,128$
(b) $43.2,25.92,15.552$
(c) $27,9,3$
(d) $52.704,63.2448,75.89376$
3. (a) $270,151.875$
(b) $3.125,6.25$
(c) $-18,-54$
(d) $\frac{1}{25}, \frac{1}{125}, \frac{1}{625}$

Exercise 3.10

1. (a) $15 / 10=22.5 / 15=1.5$
(b) $u_{1}=10, r=1.5$
(c) 384.4
2. (a) $r=2, u_{1}=0.75, u_{10}=384$
(b) $r=3, u_{1}=\frac{1}{3}, u_{10}=6561$
3. (a) $u_{1}=2.5$ and $r=2$, or
$u_{1}=-2.5$ and $r=-2$
(b) 5120
4. (a) 4,786432
(b) $1.5,1.42 \times 10^{5}$ (3 s.f.)
(c) $3.2,3.48 \times 10^{10}(3$ s.f.)
(d) $1.5,438$ (3 s.f.)
(e) $-1.1,-514$ (3 s.f.)
(f) $2.2,-3.17 \times 10^{8}(3$ s.f.)
5. (a) $1.5 ; 4.5,6.75,10.125$
(b) $-2 ;-4,8,-16$
(c) $0.5 ; 25,12.5,6.25$
(d) $1.1 ; 1.21,1.331,1.4641$

Exercise 3.11

1. (a) 9
(b) 4
(c) 6
(d) 8
(e) 6
(f) 7
2. (a) 5
(b) 7
(c) 11
(d) 11
(e) 13
(f) 11
3. 5
4. (a) 12
(b) 8
(c) 7
(d) 8
(e) 8
(f) 6

Exercise 3.12

1. (a) 2046
(b) 29296.8
(c) 4.83×10^{8} (3 s.f.)
(d) 54613.125
(e) 39.6 (3 s.f.)
(f) 1.32×10^{7} (3 s.f.)
2. (a) 625
(b) 1600
(c) 2.28 (3 s.f.)
(d) 56.0 (3 s.f.)
(e) 47.4 (3 s.f.)
(f) 808 (3 s.f.)
3. (a) 4092
(b) 47300 (3 s.f.)
(c) -712 (3 s.f.)
(d) $1.96 \times 10^{10}(3$ s.f.)
(e) 5620 (3 s.f.)
4. (a) $2 ; 10485750$
(b) $3 ; 4.24 \times 10^{11}$ (3 s.f.)
(c) $0.5 ; 256$ (3 s.f.)
(d) $1.2 ; 350$ (3 s.f.)
(e) $0.2 ; 7.81$ (3 s.f.)
(f) $2 ; 8388600$
(g) $343 ; 7.05 \times 10^{60}$ (3 s.f.)
5. (a) 0.4
(b) 1500 (3 s.f.)
6. (a) $u_{1}=1000, r=0.5$
(b) 2000 (3 s.f.)
7. 63.996
8. (a) $u_{1}=5, r=3$
(b) 107616800
(c) 108000000 (3 s.f.)
(d) 1.08×10^{8} (3 s.f.)

Exercise 3.13

1. 9430 (3 s.f.)
2. $124,000 \mathrm{AUD}$
3. (a) $9353.60,9540.88,9731.91$, 9926.77, 10125.53, 10328.26, 10535.06, 10745.99
(b) $£ 98,448.00$
4. (a) $£ 817.59$
(b) $£ 4457.36$

Mixed examination

practice 3

Exam-style questions 3

1. (a) 17
(b) 347
(c) 3710
2. (a) $u_{1}+4 d=42, u_{1}+8 d=64$
(b) $u_{1}=20, d=5.5$
3. (a) 51
(b) 1272
(c) 576
(d) 15
4. (a) 0.8
(b) 1960 (3 s.f.)
5. 0.754 m (3 s.f.)
6. (b) €145.86, €186.16
(c) $€ 1509.35$
7. (b) 7.32 h (3 s.f.)
(c) 107 h (3 s.f.)
8. Option 2
9. (i) (a) $\$ 305$
(b) $\$ 13,050$
(ii) (a) $\$ 16,560$
(b) 51 st month
10. (a) 326000 bricks (3 s.f.)
(b) 2600000 bricks (3 s.f.)

Past paper questions 3

1. (b) $11,18,25$
(c) 7
(d) 144
(e) 900
2. (a) 10
(b) $\frac{1}{3}$
(c) 1.50 (3 s.f.)
(d) Both $\left(\frac{1}{3}\right)^{10}$ and $\left(\frac{1}{3}\right)^{1000}$
(or those numbers divided by $\frac{2}{3}$) are 0 when corrected to 3 s.f.
(e) 29525.5
3. (a) 1140
(b) $6 r^{5}=16 \times 12$
(c) 2
4. (a) (i) $\$ 2050$ (ii) $\$ 5120$
(b) $\$ 11,500$
(c) Total value after 10 weeks: option one $\$ 10,000$; option two $\$ 11,500$; option three $\$ 10,230$. Therefore, option two would be best.

Chapter 4

Exercise 4.1

1. (a) 1175.88 CAD
(b) 967.74 GBP
(c) 805.30 AUD
(d) 902.00 EUR
(e) 3201.07 USD
2. (a) 1446 CAD
(b) $\$ 561$
(c) $¥ 46556$
3. (a) $€ 728.79$
(b) 152.15 CHF

Exercise 4.2

1. (a) $37,490.88 \mathrm{THB}$
(b) 3.55 SGD
2. (a) $£ 147$
(b) €171.99
(c) $£ 8.21$
3. (a) €653.36
(b) $\$ 861.24$
(c) $\$ 38.76$
4. (a) $£ 1005.43$
(b) $£ 1004.83$
(c) Bank A
5. (a) 2842.51 HKD (b) $£ 63.02$

Exercise 4.3

1. (a) €53,529.02
(b) $€ 53,874.20$
(c) $€ 53,954.01$
2. (a) 520,302.00 AUD
(b) 520,370.77 AUD
(c) $520,397.39 \mathrm{AUD}$
3. 5.64% (3 s.f.)
4. 15.7% (3 s.f.)
5. (a) 16.8 years
(b) 26.7
6. (a) $£ 76,379.84$
(b) No; investment is worth $£ 91,154.38$ after 10 years.

Exercise 4.4

1. (a) $£ 64$
(b) $£ 46,620$
2. (a) $£ 832$
(b) $£ 49,920$
(c) $£ 592$
(d) Arthur; Ken repaid a total of $£ 53,280$, which is greater than Arthur's total by £3360.
3. (a) $£ 2500$
(b) $£ 22,500$
(c) $£ 549$
(d) $£ 3852$
4. (a) €86.32
(b) €5179.20
(c) $€ 799.20$
(d) Yes; they would have saved about €296.
5. (a) Monthly payments: $£ 387.72$; customer deposit £17,108
(b) Total amount of credit: $£ 19,404$; total amount payable: $£ 36,428$
6. (a) $\$ 160.32$
(b) $\$ 9619.20$
(c) $\$ 1619.20$
7. (a) $¥ 1234.82$
(b) $¥ 44,453.52$
8. (a) $\$ 56,346.36$
(b) $\$ 16,843.36$
(c) No; option 3 would make them worse off by $\$ 1165.44$

Exercise 4.5

1. $£ 433,842.38$
2. $€ 54112.55$
3. $¥ 4.30$ million (3 s.f.)
4.

Commodity	Overall rate of inflation, \%	Annual \% rate of inflation
Rump steak, British	10.3	0.702
Cod fillets	50.5	2.96
Sugar, granulated	19.4	1.27
Cheese, Cheddar	71.8	3.94
Apples, eating	21.4	1.39
Carrots	-3.39	-0.246

5. 20 years
6. 10

Exercise 4.6

1. (a) $£ 250.76$ (b) $£ 286.19$
2. (a) $\$ 15,383.74$
(b) $\$ 34,611.26$
(c) Yes; he would be better off by $\$ 399.01$.
3. 2.84 (3 s.f.)
4. 10.4 years (3 s.f.)
5. (a) $\$ 179,200$
(b) 32.0 (3 s.f.)
(c) 3.06 years (3 s.f.)

Mixed examination

practice 4

Exam-style questions 4

1. (a) $23,763.52 \mathrm{RUB}$
(b) 235.66 CAD
2. (a) $\$ 10,463.23$
(b) $\$ 3800.39$
3. (a) $£ 12,957.15$
(b) 44.9% (3 s.f.)
4. (a) $207,184.07 \mathrm{ZAR}$
(b) 14.8 years (3 s.f.)
(c) 23.4 (3 s.f.)
5. (a) 25 months (b) $\$ 184.73$
6. (a) 7.26
(b) (i) $\$ 34,768.38$
(ii) $\$ 30,221.00$
7. (a) Monthly payment $£ 700$;
(b) total interest $£ 2151.76$;
(c) total amount payable £25,151.76
8. (a) $£ 19,071.50$
(b) 11.2%
(c) $£ 4062.10$
(d) 11.7%
(e) Yes; if the annual rate of depreciation stayed at 14% (value based on salesman's claim), the car would be worth less than $£ 20,000$ after 3 years.

Past paper questions 4

1. (a) $\mathrm{A}: \$ 1200 ; \mathrm{B}: \$ 1239.51$;

C: \$1230; D: \$1273.37
(b) D ; the total allowance is the highest (or grows the fastest).
(c) 10%
2. (a) $\$ 29,263.23$
(b) (i) In the 4th year
(3.46 years)
(ii) $\$ 298.20$
3. (a) (i) $\$ 2700, \$ 2900$
(ii) $\$ 6300$
(b) (i) $\$ 2160$
(c) 6%
(d) $\$ 3523.93$
4. (a) $€ 612.80$
(b) $\$ 780.64$
(c) $\$ 19.36,2.42 \%$
5. (a) $€ 16,857.45$ (b) 30.6

Chapter 5

Exercise 5.1

1. (a) Continuous
(b) Discrete
(c) Continuous
(d) Discrete
(e) Discrete
(f) Continuous
(g) Continuous
(h) Discrete
(i) Discrete
(j) Continuous

Exercise 5.2

1.

Mark	Frequency
5	4
6	4
7	6
8	4
9	4
10	3

2.

Number of rejects	Frequency
0	10
1	6
2	7
3	7
4	4
5	2

3.

Home runs	Frequency
23	1
24	2
25	1
26	2
27	4
28	4
29	0
30	0
31	2
32	0
33	0
34	1

Exercise 5.3

1.

Number of students	Frequency
$0-4$	4
$5-9$	6
$10-14$	16
$15-19$	7
$20-24$	7

2.

Number of CDs	Frequency
$45-49$	2
$50-54$	7
$55-59$	4
$60-64$	2
$65-69$	11
$70-74$	4

3.

4.

5.

Length of service (years)
6.

Exercise 5.4

Answers may vary, depending on how the classes are defined in each case.
1.

Time (s)	Frequency
$12-16$	5
$16-20$	13
$20-24$	9
$24-28$	2
$28-32$	1

2.

Distance (m)	Frequency
$5-7$	8
$7-9$	8
$9-11$	7
$11-13$	5
$13-15$	2

3.

Distance (m)	Frequency
$1.5-2.5$	2
$2.5-3.5$	2
$3.5-4.5$	12
$4.5-5.5$	8
$5.5-6.5$	6

4.

Time (s)	Frequency
$60-64$	1
$64-68$	6
$68-72$	6
$72-76$	12
$76-80$	3
$80-84$	2

5.

Distance (m)	Frequency
$25-30$	5
$30-35$	9
$35-40$	9
$40-45$	5
$45-50$	2

Exercise 5.5

1.

Time (s)	Class boundaries	Frequency	Class width	Mid-interval value
$18 \leq t<20$	$18-20$	3	2	$18+20) \div 2$ $=19$
$20 \leq t<22$	$20-22$	4	2	21
$22 \leq t<24$	$22-24$	6	2	23
$24 \leq t<26$	$24-26$	10	2	25
$26 \leq t<28$	$26-28$	3	2	27
$28 \leq t<30$	$28-30$	2	2	29

2. (Exercise 5.3 question 3)

Class boundaries: 1-20, 21-40, 41-60, 61-80, 81-100
Class widths: all 19
Mid-interval values: $10.5,30.5$, 50.5, 70.5, 90.5
(Exercise 5.3 question 4)
Class boundaries: 21-30,
31-40, 41-50, 51-60
Class widths: all 9
Mid-interval values: 25.5, 35.5, 45.5, 55.5
(Exercise 5.3 question 5)
Class boundaries: 0-6, 7-13,
14-20, 21-27, 28-35
Class widths: all 6
Mid-interval values: 3, 10, 17, 24, 31
(Exercise 5.3 question 6)
Class boundaries: 0-3, 4-7,
8-11, 12-15, 16-19
Class widths: all 3
Mid-interval values: 1.5, 5.5, $9.5,13.5,17.5$
3. Answers may vary depending on how the classes were defined in Exercise 5.4.
(Exercise 5.4 question 1)
Class boundaries: 12-16,
16-20, 20-24, 24-28, 28-32
Class widths: 4
Mid-interval values: 14, 18, 22, 26, 30
(Exercise 5.4 question 2)
Class boundaries, 5-7, 7-9,
9-11, 11-13, 13-15
Class widths: 2
Mid-interval values: 6, 8, 10,
12, 14
(Exercise 5.4 question 3)
Class boundaries: 1.5-2.5, 2.5-
3.5, 3.5-4.5, 4.5-5.5, 5.5-6.5

Class widths: 1
Mid-interval values: 2, 3, 4, 5, 6
(Exercise 5.4 question 4)
Class boundaries: 60-64,
64-68, 68-72, 72-76, 76-80,
80-84
Class widths: 4
Mid-interval values: 62, 66, 70, 74, 78, 82
(Exercise 5.4 question 5)
Class boundaries: 25-30,
30-35, 35-40, 40-45, 45-50
Class widths: 5
Mid-interval values: 27.5, 32.5, 37.5, 42.5, 47.5

Exercise 5.6

1. Frequencies: $7,6,2,3,8,4$

2. Frequencies: $4,10,4,9,8,5$

3. Frequencies: $2,6,10,12,11,4$

4. Class boundaries: 150.5-190.5,
190.5-230.5, 230.5-270.5,
270.5-310.5, 310.5-350.5

Class widths: 40
Mid-interval values: 170.5, $210.5,250.5,290.5,330.5$
Frequencies: 2, 12, 17, 6, 3

5. Class boundaries: 19.5-39.5, 39.5-59.5, 59.5-79.5,
79.5-99.5, 99.5-119.5

Class widths: 20
Mid-interval values: 29.5, 49.5, 69.5, 89.5, 109.5

Frequencies: 5, 12, 20, 9, 4

6. Answers may vary depending on how the classes were defined.
Class boundaries: 7.05-7.45,
7.45-7.85, 7.85-8.25,
8.25-8.65, 8.65-9.05

Frequencies: 1, 5, 10, 8, 3

Monthly iron ore production (millions of tonnes)
7. Class boundaries: 55.0-55.5,
55.5-56.0, 56.0-56.5, 56.5-57.0, 57.0-57.5, 57.5-58.0, 58.0-58.5, 58.5-59.0, 59.0-59.5

Class widths: 0.5
Mid-interval values: 55.25,
$55.75,56.25,56.75,57.25$,
57.75, 58.25, 58.75, 59.25

Frequencies: 2, 2, 3, 5, 4, 6, 6,
0, 2

Exercise 5.7

1. $5,12,17,25,33,42,45$
2. $1,3,8,18,30,34,37$
3. $2,8,17,32,42,49,52$

Exercise 5.8

1. (a) $20,50,62,76,78,78,79,81$
(b)

(c) 10.25 s
2. (a) $3,4,9,13,20,31,46,47$
(b)

(c) 6.8 m
(d) $6.4 \mathrm{~m}, 7.1 \mathrm{~m}$
3. (a) 20.2 cm
(b) 43
(c) 11.7%

Exercise 5.9

1. (a)

(b)

(c)

(d)

2. (Answers may vary, depending on estimates of the median and quartiles)
(a)

Min: 35; lower quartile: 52.5 ; median: 63; upper quartile: 75 ; max: 89
(b)

(c)

Min: 23.05 ; lower quartile: 36 ;
median: 41.34; upper
quartile: 48.66; max: 54.73
(d)

Min: 84.6; lower quartile: 135.6 ; median: 152.3; upper quartile: 165.3; max: 188.4

Exercise 5.10

1. (a) $\operatorname{Min} 45, \max 93$
(b) 74
(c) 58
(d) 87
2. (a) 171 cm
(b) Max $199 \mathrm{~cm}, \min 154 \mathrm{~cm}$
(c) $Q_{1}=160 \mathrm{~cm}, Q_{3}=180 \mathrm{~cm}$
3. (a) Frequencies: $6,5,5,4,7,5$, $4,6,4,4$; total: 50
(b)

(c) $Q_{1}=16$, median $=18$, $Q_{3}=21$

Mixed examination practice 5
Exam-style questions 5
1.

2. (a) Frequencies: $8,10,13,2,1,2$ (b)

3. (a) Frequencies: $3,7,8,7,5$
(b) Cumulative frequencies: $3,10,18,25,30$

(c)

4. (a) 22.5 minutes
(b) $Q_{1}=16$ minutes, $Q_{3}=29$ minutes
(c) 7
(d)

5. (a) (i) 100
(ii) 75%
(iii) $Q_{1}=68 \%, Q_{3}=81 \%$
(b) 41
(c)

(d) 18
6. (a) 5
(b) $Q_{1}=3, Q_{3}=5.5$
(c) 4
(d)

(e) Median of A2 is higher than that of A1, indicating overall better marks. Marks of A2 are slightly more consistent than those of A1, as the difference $Q_{3}-Q_{1}$ is smaller.
7. (a)

$\left.$| | Year | Year |
| :--- | :---: | :---: |
| 12G | | | | $\mathbf{1 2 H}$ |
| :---: | \right\rvert\, | Median | 78 |
| :--- | :---: |
| Lower quartile | 60 |
| Upper quartile | 85 |

(b) 12G had higher marks than 12 H overall, but the test marks of 12 H were more consistent, as shown by a smaller $Q_{3}-Q_{1}$ difference.

Past paper questions 5

1. (a) 26 cm
(b) 14 cm
(c)

2. (a) (ii) and (iv)
(b) (i) 10
(ii) 12
(iii) 0.8
3. (a) 170 cm
(b) 163 cm
(c) 172 cm
(d)

Chapter 6

Answers for comparison or discussion questions are omitted as responses may vary.

Exercise 6.1

1. 3
2. 6
3. $£ 47$

Exercise 6.2

1. $£ 170.52$
2. $\$ 79,640$
3. 96.9 KB (3 s.f.)
4. (a) 4.14 years (3 s.f.)
(b) 118 lbs (3 s.f.)
5. (a) 307 (b) 12.8 (3 s.f.)
(c) 11.0 (3 s.f.)
6. (a)

	Type of car		
Average	4-Door Sedan	2-Door Coupe	Hatchback
Mean price(\$)	$\$ 12,334.08$	$\$ 16,072.40$	$\$ 12,270$
Median price (\$)	$\$ 12,295$	$\$ 16,300$	$\$ 12,360$

(b) Mean price, because it makes use of all the data for each type of car
(c) Different sample sizes; use same/similar samples sizes
7. (a) 35
(b) 6.94 (3 s.f.)
(c) 7

Exercise 6.3

1. (a) (i) 4
(ii) 3
(iii) 2
(b) (i) 64
(ii) 64
(iii) 57 and 70
(c) (i) 30.7 (3 s.f.)
(ii) 29
(iii) 29
(d) (i) 117.9
(ii) 110
(iii) 107 and 110
(e) (i) 42.1 (3 s.f.)
(ii) 42 (iii) 42 and 44
2. (a) 32
(b) 30.5
(c) 27
3. (a) 35
(b) 19
(c) 19
4. (a) (i) $5 \quad$ (ii) 12.5
(iii) 10
(b) (i) 10.6
(ii) 19.6
(iii) 18 and 21.2
(c) (i) 5
(ii) 10.5
(iii) 7
$\begin{array}{ll}\text { 5. (a) } 25 & \text { (b) } 47 \\ \text { (c) } 1.88 & \text { (d) } 0 \\ \text { (e) } 1 & \end{array}$
5. (a)

	Round $\mathbf{1}$	Round $\mathbf{2}$	Rounds $\mathbf{1}$ and 2 combined
Mean	71.2	71.2	71.2
Mode	71 and 73	69	69 and 71
Median	71	71	71

7. (a) (i) 50.6 minutes (3 s.f.)
(ii) 41-47 minutes
(b) (i) 184 thousand
(ii) 0-150 thousand

Mixed examination practice 6

Exam-style questions 6

1. (a) 308
(b) 54
(c) 30
2. (a) Group 1: 27; Group 2: 25
(b) Group 1: 4.81 (3 s.f.);

Group 2: 4
(d) 4.42 (3 s.f.)
3. 6.70 m (3 s.f.)
4. (a) 720 million
(b) 15 million
(c) 17.5 million (3 s.f.)
5. (a) $x=39, y=48$
(b) $x=13, y=18$
(c) $x=45, y=46$
6. (a) 61
(b) 158
(c) 2.59 (3 s.f.)
(d) 2
(e) 2
7. (a) 3.9
(b) 3
(c) 3

Past paper questions 6

1. (a) $\$ 166$ (to the nearest dollar)
(b) $\$ 165$
(c) (i) $\$ 2430$
2. (a) 10
(b) 4
(c) 6
3. (a) 51
(b) (i) $60-70 \mathrm{~cm}$
(ii) $60-70 \mathrm{~cm}$
(iii) $69.5 \mathrm{~cm}(3$ s.f.)

Chapter 7

Exercise 7.1

1. (a)
(i) 6.8
(ii) 0.46
(iii) 0.34
(b) (i) 227
(ii) 27
(iii) 12
(c) (i) 72
(ii) 46
(iii) 12
(d) (i) 18.9
(ii) 19.2
(iii) 7.8
(e) (i) 330
(ii) 412
(iii) 237
(f)
(i) 97.1
(ii) 3.5
(iii) 1.4
2. (a) (i) 1
(ii) 5
(iii) 2
(b) (i) 165 cm
(ii) 27 cm
(iii) 18 cm
(c) (i) 63
(ii) 6
(iii) 2
(d) (i) 3
(ii) 6
(iii) 2
(e) (i) 29 kg
(ii) 7 kg
(iii) 3 kg
(f) (i) $\$ 1849$
(ii) $\$ 4450$
(iii) $\$ 900$
3. (a) (i) 47.5 years
(ii) 39.5 years, 51.5 years
(iii) 12 years
(b) (i) 438 cm
(ii) $432 \mathrm{~cm}, 445 \mathrm{~cm}$
(iii) 13 cm
(c) (i) 95
(ii) 86,102
(iii) 16

Exercise 7.2

1. (a) $\bar{x}=2.82$ hours (3 s.f.), $\sigma_{x}=2.08$ hours (3 s.f.)
(b) $\bar{x}=0.239$ inches (3 s.f.), $\sigma_{x}=0.222$ inches (3 s.f.)
(c) $\bar{x}=11.5^{\circ} \mathrm{C}, \sigma_{x}=0.782^{\circ} \mathrm{C}$
(d) $\bar{x}=19.2^{\circ} \mathrm{C}, \sigma_{x}=2.55^{\circ} \mathrm{C}$
2. (a) $18^{\circ} \mathrm{C}$
(b) $1.69^{\circ} \mathrm{C}$
3. (a) $£ 2649.20$
(b) $£ 711.91$
4. (a) $\bar{x}=47100$ (3 s.f.),
$\sigma_{x}=19300$ (3 s.f.)
(b) $\bar{x}=39600$, $\sigma_{x}=21300$ (3 s.f.)
5. $\bar{x}=39, \sigma_{x}=9.66$ (3 s.f.)

Exercise 7.3

1. (a) (i) 2010: 649 (3 s.f.); 2011: 662 (3 s.f.)
(ii) 2010: 55.7 (3 s.f.); 2011: 45.1 (3 s.f.)
(b) On average more goals were scored per team in 2011, and the number of goals scored was less varied than in 2010.
2. (a) (i) MS-A: 50; MS-B: 53
(ii) MS-A: quartiles 33 and $93, \mathrm{IQR}=60$; MS-B: quartiles 50 and 70, $\mathrm{IQR}=20$
(b) MS-B performed better, with both higher marks on average and more consistency.
3. $(\mathrm{a}),(\mathrm{b})$

Lab A:

Time (minutes)	Frequency	Cumulative frequency
$40-42$	5	5
$43-45$	7	12
$46-48$	5	17
$49-51$	10	27
$52-54$	5	32
$55-57$	1	33
$58-60$	3	36

Lab B:

Time (minutes)	Frequency	Cumulative frequency
$37-39$	6	6
$40-42$	5	11
$43-45$	4	15
$46-48$	1	16
$49-51$	6	22
$52-54$	4	26
$55-57$	7	33
$58-60$	2	35
$61-63$	1	36

(c)

(d) Lab A: median 49.7, IQR 8; Lab B: median 49.8, IQR 14
(e) Although the two labs have approximately the same median waiting times, there is a much larger spread in waiting times at Lab B.
4. (a) 183 million
(b) 193 million
(c) 433 million (3 s.f.)
5. (a), (b), (c)

	\mathbf{M}	\mathbf{F}	$\mathbf{M \& F}$
$\overline{\boldsymbol{x}}$	30.7	32.1	31.4
$\boldsymbol{\sigma}$	20.4	21.2	20.8

(d) On average, females are older than males. The ages of males are slightly less varied than those of females.

Mixed examination practice 7

Exam-style questions 7

1. (a) $x+y=15$
(b) $x=7, y=8$
(c) 8
(d) 5.5 and 9
(e) 3.5
2. (a) $25,000-30,000$
(b) 25,000-30,000
(c) $\$ 25,500$
(d)

(e) (i) $\$ 27,000$ (ii) $\$ 9000$ (f)

3. $x=22, y=2$
4. (a) 50
(b) $c=4, d=8, e=41, f=3$
5. (a) 20.8 million barrels
(b) 2.08 million barrels per year
6. (a) 31
(b) 33.6
7. (a) (i) 17 million
(ii) 46
(iii) 16%
(b)

8. (a) $25 \leq t<30$
(b) $25 \leq t<30$
(c) $\bar{x}=25.3$ minutes (3 s.f.), $\sigma_{x}=6.11$ minutes (3 s.f.)
(d)

(e) The mean lies near the lower boundary of the modal class, which is also the class in which the median lies. This reflects the fact that the data leans towards the lower values, as can also be seen from the histogram.
9. (a)

(b) Males: $15 \leq w<30$;
females: $0 \leq w<15$
(c) Males: $\overline{\boldsymbol{x}}=36.1 \mathrm{lbs}$ (3 s.f.), $\sigma_{x}=26.7 \mathrm{lbs}$ (3 s.f.); females: $\bar{x}=32.7 \mathrm{lbs}$ (3 s.f.), $\sigma_{x}=24.1 \mathrm{lbs}$ (3 s.f.)
(d) The male and female median weights are similar, but the weights of the males are more varied than those of the females, with greater IQR.
10. (a) 60
(b) (i) $130-150 \mathrm{~km}$
(ii) $130-150 \mathrm{~km}$
(c) (i) $146 \mathrm{~km}(3$ s.f.)
(ii) 30.4 km (3 s.f.)
(d) All three averages lie within the same interval, and the standard deviation is only about 1.5 times the interval width, indicating a consistency among the data values.
11.(a) (i) 152 cm (ii) 38 cm
(b)

(c) $u=10, v=14, w=19$
(d) 146 cm (3 s.f.)

Chapter 8

Exercise 8.1

1. (a) $x \in A$
(b) $x \notin A$
(c) $B \subset C$
(d) $C \cup D$
(e) $A \cap B$
2. (a) $A=\{x, y, z\}$
(b) $n(A \cap B)=3$
(c) $B=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
(d) $n(A)=5$

Exercise 8.2

1. (a) $n(P)=8$
(b) $n(Q)=6$
(c) $n(R)=10$
2. $A \cup B=\{5,6,7, \ldots, 15\}$; $A \cap B=\{9,10,11\}$
3. (a)

(b)

(c)

4. (a) $A=\{1,4,9,16,25,36$, 49, 64\}
(b) $B=\{1,8,27,64\}$
(c) $A \cup B=\{1,4,8,9,16,25$, $27,36,49,64\}$
(d) $A \cap B^{\prime}=\{4,9,16,25,36,49\}$

Exercise 8.3

1. (a) (i) 42 (ii) 48
(b) 9
(c)

2. (a) $A=\{5,7,11,13,17,19,23$, $29,31,37,41,43,47,53\}$
(b) (i) $B \cup C=\{5,11,22,33$, 44, 55\}
(ii) $A \cap B \cup C=\{11\}$
3. (a) 8
(b) $\{12,36\}$
(c) $\{18\}$
4. (a) Track but not Field

(b) Track or Field but not both

5. (a) (i) 6
(ii) 2
(b) (i) $\{11,12\}$
(ii) $\{1,8,10\}$

Exercise 8.4

1. (a) $P \cap Q \cap R$
(b) $P \cap R$
(c) $(P \cup R)^{\prime} \cap Q$
(d) $R \cap(\mathrm{P} \cup Q)$
2. (a) $\{\mathrm{g}\}$
(b) $\{\mathrm{a}, \mathrm{e}, \mathrm{f}, \mathrm{h}, \mathrm{j}, \mathrm{k}\}$
(c) $\{\mathrm{f}, \mathrm{h}, \mathrm{j}\}$
(d) $\{\mathrm{c}, \mathrm{f}, \mathrm{g}\}$
3. (a) and (b)

(c) 11
4. (a)

(b) 21

Mixed examination practice 8

Exam-style questions 8

1. (a) Neither History nor Geography
(b) 48
(c)

2. (a) 9
(b) Neither F nor S. Since $n(F \cup S)=40$, $n(F \cup S)^{\prime}=0$
(c)

3. (a) (i) IB but not A Level
(ii) $B \cap A^{\prime}$
(b) $x=25$
(c) (i) 82
(ii) 12
4. (a) Given $n(F \cap R)=20$.

Given that x read all 3 . So, the region, $\left(F \cap R \cap N^{\prime}\right)=$ $20-x$
(b) $31-x$
(c)

(d) $x=16$
5.

6. (a) $x=7$
(b) (i) 19
(ii) 144
(iii) 23
(iv) 98
7. (a) (i) 4
(ii) 40
(b) 42
(c) 70
8. (a)

(b) $x=4$
(c) 80
(d)

9.

10.

Past paper questions 8

1. (a) $20-x$
(b) $x=15$
(c) 55

Answers
2. (a)

(b) $x=31$
(c) 156

Chapter 9

Exercise 9.1

1. (a) Proposition, true
(b) Not a proposition
(c) Proposition, false
(d) Proposition, true
(e) Proposition, true
(f) Not a proposition
(g) Proposition, true
(h) Not a proposition
(i) Proposition, true
(j) Not a proposition

Exercise 9.2

1. (a) $\neg p$
(b) $r \underline{v} p$
(c) $q \wedge r$
(d) $\neg r \wedge q$
2. (a) x is not a prime number.
(b) x is a prime number less than 100.
(c) Either x is not a prime number or it is a 2-digit number.
(d) Either x is not a prime number or it is not a 2-digit number.
(e) x is not a prime number less than 100.
3. (a) Jenny hates football and she does not watch Sky Sports.
(b) Jenny does not hate football and she watches Sky Sports.
(c) Either Jenny watches Sky Sports or she watches the Comedy Channel, but not both.
4. (a) $q \wedge p$
(b) $\neg q \wedge \neg r$
(c) $\neg p \vee \neg q$
(d) $\neg p \wedge \neg r$

Exercise 9.3

1. (a) Either Veejay attends football training or he passes his test, but not both.
(b) Veejay revises for his test and he does not attend football training.
(c) Veejay is not revising for his test and he attends football training.
(d) If Veejay revises for his test then he does not attend football training.
(e) If Veejay revises for his test then he passes his test.
(f) If Veejay does not revise for his test then he does not pass his test.
2. (a) $p \Rightarrow r$
(b) $q \Rightarrow \neg r$
(c) $\neg q \Rightarrow p$
3. (a) $p \Rightarrow q$
(b) $\neg q \Rightarrow \neg p$
(c) $p \Leftrightarrow q$
4. (a) If x is a quadrilateral and also a 2-D shape with a pair of parallel sides then x is a parallelogram. False.
(b) If x is a parallelogram then x is a quadrilateral. True.
(c) If x is a parallelogram then x is a $2-\mathrm{D}$ shape with a pair of parallel sides. True.
(d) x is a quadrilateral and also a 2-D shape with a pair of parallel sides if and only if x is a parallelogram. False.

Exercise 9.4

1. (a) (i) $p \wedge q$
(ii) $\neg p \wedge \neg q$
(b) Either Donald did not pass his driving test or Debbie passed her driving test.
(c)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{p} \vee \boldsymbol{q}$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

2. (a) (i) $\neg p \Rightarrow \neg q$
(ii) $q \Leftrightarrow p$
(b)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \Rightarrow \neg \boldsymbol{q}$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

Exercise 9.5

1. (a) $m \wedge(e \underline{\vee})$
(b) If a student does not choose Science then he/she chooses Economics.
(c)

\boldsymbol{e}	\boldsymbol{s}	$\neg \boldsymbol{e}$	$\neg \mathbf{e} \Rightarrow \mathbf{s}$
T	T	F	T
T	F	F	T
F	T	T	T
F	F	T	F

2. (a) If I go to the cinema then it is not the weekend.
(b)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\boldsymbol{q} \Rightarrow \boldsymbol{\boldsymbol { p }}$
T	T	F	F
T	F	F	T
F	T	T	T
F	F	T	T

3.

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{p} \vee \boldsymbol{q}$	$\boldsymbol{r} \Rightarrow(\boldsymbol{p} \vee \boldsymbol{q})$
T	T	T	F	F
T	T	F	F	T
T	F	T	T	T
T	F	F	T	T
F	T	T	T	T
F	T	F	T	T
F	F	T	F	F
F	F	F	F	T

4. (a) (i) $p \Rightarrow q$ (ii) $q \wedge \neg r$ (iii) $\neg p \Rightarrow r$
(b) If Boris does not have a football then either he is a rugby player or he has the rugby ball.
(c)

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\neg \boldsymbol{r} \boldsymbol{p} \vee \boldsymbol{q}$	$\neg \boldsymbol{r} \Rightarrow(\boldsymbol{p} \vee \boldsymbol{q})$	
T	T	T	F	T	T
T	T	F	T	T	T
T	F	T	F	T	T
T	F	F	T	T	T
F	T	T	F	T	T
F	T	F	T	T	T
F	F	T	F	F	T
F	F	F	T	F	F

Exercise 9.6

1. (a) (i)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \neg \boldsymbol{q}$	$\neg(\boldsymbol{p} \wedge \neg \boldsymbol{q})$
T	T	F	F	T
T	F	T	T	F
F	T	F	F	T
F	F	T	F	T

(ii) Neither
(b) (i)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q})$	$\boldsymbol{p} \vee \neg(\boldsymbol{p} \wedge \boldsymbol{q})$
T	T	T	F	T
T	F	F	T	T
F	T	F	T	T
F	F	F	T	T

(ii) Tautology
(c) (i)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\boldsymbol{p} \Rightarrow \boldsymbol{q}$	$\neg \boldsymbol{p} \wedge \boldsymbol{q}$	$(\boldsymbol{p} \Rightarrow \boldsymbol{q}) \wedge(\neg \boldsymbol{p} \wedge \boldsymbol{q})$
T	T	F	T	F	F
T	F	F	F	F	F
F	T	T	T	T	T
F	F	T	T	F	F

(ii) Neither
(d) (i)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\boldsymbol{p} \Rightarrow \boldsymbol{q}$	$\neg(\boldsymbol{p} \Rightarrow \boldsymbol{q})$	$\neg \boldsymbol{p} \vee \boldsymbol{q}$	$\neg(\boldsymbol{p} \Rightarrow \boldsymbol{q}) \Leftrightarrow \neg \boldsymbol{p} \vee \boldsymbol{q}$
T	T	F	T	F	T	F
T	F	F	F	T	F	F
F	T	T	T	F	T	F
F	F	T	T	F	T	F

(ii) Contradiction
(e) (i)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\neg \boldsymbol{q} \wedge \boldsymbol{p}$	$\boldsymbol{p} \wedge(\neg \boldsymbol{q} \wedge \boldsymbol{p})$
T	T	F	F	F
T	F	T	T	T
F	T	F	F	F
F	F	T	F	F

(ii) Neither
2. (a) (i) Either the bad weather does not continue or this week's cricket match will be cancelled.
(ii) The bad weather does not continue and this week's cricket match is not cancelled.
(iii) This week's cricket match will not be cancelled if and only if the bad weather does not continue.
(iv) Either the bad weather continues and this week's cricket match is cancelled or the cricket match will be cancelled and the bad weather does not continue (not both).
(b) (i) Logically equivalent

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \boldsymbol{q} \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{p} \vee \boldsymbol{q}$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

(ii) Logically equivalent

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$(\boldsymbol{p} \wedge \boldsymbol{q})$	$(\boldsymbol{p} \wedge \boldsymbol{q}) \wedge \boldsymbol{r}$
T	T	T	T	T
T	T	F	T	F
T	F	T	F	F
T	F	F	F	F
F	T	T	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$(\boldsymbol{q} \wedge \boldsymbol{r})$	$\boldsymbol{p} \wedge(\boldsymbol{q} \wedge \boldsymbol{r})$
T	T	T	T	T
T	T	F	F	F
T	F	T	F	F
T	F	F	F	F
F	T	T	T	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(iii) Logically equivalent

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \Leftrightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	T

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \mathbf{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\neg \boldsymbol{q} \wedge \neg \boldsymbol{p}$	$(\boldsymbol{p} \wedge \boldsymbol{q}) \vee(\neg \boldsymbol{q} \wedge \neg \boldsymbol{p})$
T	T	F	F	T	F	T
T	F	F	T	F	F	F
F	T	T	F	F	F	F
F	F	T	T	F	T	T

(iv) Not logically equivalent

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{p} \Rightarrow \boldsymbol{q}$	$(\boldsymbol{p} \boldsymbol{p} \boldsymbol{q}) \boldsymbol{r} \boldsymbol{r}$
T	T	T	T	T
T	T	F	T	F
T	F	T	F	T
T	F	F	F	T
F	T	T	T	T
F	T	F	T	F
F	F	T	T	T
F	F	F	T	F

3. (a) (i) If the internet is not working then I do not check my emails.

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	$\boldsymbol{q} \Rightarrow \boldsymbol{r}$	$\boldsymbol{q} \Rightarrow(\boldsymbol{q} \Rightarrow \boldsymbol{r})$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	T	T
F	T	T	T	T
F	T	F	F	T
F	F	T	T	T
F	F	F	T	T

(ii) If the internet is working then I check my emails.
(b)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \mathbf{q}$	$\boldsymbol{p} \Rightarrow \neg \boldsymbol{q}$	$\neg \boldsymbol{p} \Rightarrow \boldsymbol{q}$	$(\boldsymbol{p} \Rightarrow \neg \boldsymbol{q}) \vee(\neg \boldsymbol{p} \Rightarrow \boldsymbol{q})$
T	T	F	F	F	T	T
T	F	F	T	T	T	T
F	T	T	F	T	T	T
F	F	T	T	T	F	T

(c) Statement is a tautology.

Exercise 9.7

1. (a) $\neg p \Rightarrow \neg r$ means: if the music is not good then I do not dance to it.
(b) $r \Rightarrow p$ means: if I dance to the music then the music is good.
(c) $\neg r \Rightarrow \neg q$ means: if I do not dance to the music then I do not feel like dancing.
2. (a) (i) If you do not listen attentively in class, then you do not perform well in tests.
(ii) If you perform well in tests then you listen attentively in class.
(iii) If you do not perform well in tests then you do not listen attentively in class.
(b) (i) If you do not like current affairs, then you do not listen to news regularly.
(ii) If you listen to news regularly then you like current affairs.
(iii) If you do not listen to news regularly then you do not like current affairs.
(c) (i) If you are not taught by Mrs Brown, then you are not brilliant at Logic.
(ii) If you are brilliant at Logic then you are taught by Mrs Brown.
(iii) If you are not brilliant at Logic then you are not taught by Mrs Brown.
(d) (i) If Sandra is not unwell, then she can play in the netball match.
(ii) If Sandra cannot play in the netball match then she is unwell.
(iii) If Sandra can play in the netball match then she is not unwell.
(e) (i) If Andrew is not good at languages, then he cannot be a tourist guide.
(ii) If Andrew can be a tourist guide then he is good at languages.
(iii) If Andrew cannot be a tourist guide then he is not good at languages.
3. (a) If Grandma visits Aunt Sally then she goes to the dentist.
(b) $\neg q \Rightarrow p$
(c) No; it is none of these.
4. (a) (i) If a shape is a parallelogram then it is a rectangle.
(ii) If a shape is not a rectangle then it is not a parallelogram.
(iii) If a shape is not a parallelogram then it is not a rectangle.
(b) Statement (iii) is true.

Mixed examination practice 9

Exam-style questions 9

1. (a) (i) My laptop is not fixed and I will not finish writing up my Portfolio task.
(ii) If my laptop is fixed then I will finish writing up my portfolio task.
(iii) I will finish writing up my portfolio task if and only if my laptop is fixed.
(b) (i) $p \wedge \neg q$ (ii) $p \wedge \neg r$
2. (a) If New Year is approaching then I will shop for presents.
(b)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \Rightarrow \neg \boldsymbol{q}$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

3. (a) If I save enough money then I buy a new car.
(b) $\neg p \wedge \neg q$
(c)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \Rightarrow \boldsymbol{q}$	$\neg \boldsymbol{p} \wedge \neg \boldsymbol{q}$
T	T	F	F	T	F
T	F	F	T	T	F
F	T	T	F	T	F
F	F	T	T	F	T

4. (a) (i) If Elliot does not pass his driving test then his dad will not buy him a new car.
(ii) If his dad buys him a new car then Elliot passes his driving test.
(iii) If his dad does not buy him a new car then Elliot does not pass his driving test.
(b) (i) If it does not snow heavily tonight then the roads will be busy tomorrow morning.
(ii) If the roads are not busy tomorrow morning then it will snow heavily tonight.
(iii) If the roads are busy tomorrow morning then it will not snow heavily tonight.
(c) (i) If the recession does not continue then unemployment will not remain high.
(ii) If unemployment remains high then the recession will continue.
(iii) If unemployment does not remain high then the recession will not continue.
5. (a) $p \Rightarrow \neg q$
(b) $q \Rightarrow \neg p$
6. (a) If x has equal sides and equal angles then x is a regular polygon. False.
(b) x is a regular polygon if and only if x is a polygon with equal sides and equal angles. True.
(c) x is a polygon if and only if x has equal sides and equal angles. False.
7. (a) (i) If Marco is not a member of the debating society then he does not enjoy debating.
(ii) If Marco enjoys debating then he is a member of the debating society.
(b) (i)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \boldsymbol{\Rightarrow} \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

(ii)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{\neg} \boldsymbol{p}$	$\boldsymbol{\sim} \boldsymbol{q}$	$\boldsymbol{\sim} \boldsymbol{p} \boldsymbol{\neg} \boldsymbol{q} \boldsymbol{q}$
T	T	F	F	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

(iii)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \vee \neg \boldsymbol{q}$
T	T	F	T
T	F	T	T
F	T	F	F
F	F	T	T

(iv)

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{p}$	$\boldsymbol{\neg p} \wedge \boldsymbol{q}$
T	T	F	F
T	F	F	F
F	T	T	T
F	F	T	F

(c) Statements (ii) and (iii) are logically equivalent.

Past paper questions 9

1.

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \neg \boldsymbol{q}$	$\boldsymbol{p} \vee \boldsymbol{q}$	$(\boldsymbol{p} \wedge \neg \boldsymbol{q}) \Rightarrow(\boldsymbol{p} \vee \boldsymbol{q})$
T	T	F	F	T	T
T	F	T	T	T	T
F	T	F	F	T	T
F	F	T	F	F	T

2. (a)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\boldsymbol{p} \vee \boldsymbol{q}$	$\neg \boldsymbol{p}$	$(\boldsymbol{p} \vee \boldsymbol{q}) \wedge \neg \boldsymbol{p}$	\Rightarrow	\boldsymbol{q}
T	T	T	T	F	F	T	T
T	F	F	T	F	F	T	F
F	T	F	T	T	T	T	T
F	F	F	F	T	F	T	F

(b) Valid argument or tautology
3. (a) Both are ' p or q '; the first is 'but not both'.
(b)

$\neg q$	$p \vee q$	$\neg p \underline{v} \neg \boldsymbol{q}$	
F	F	F	T
T	T	T	T
F	T	T	T
T	F	F	T

(c) Tautology

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{\sim} \boldsymbol{p}$
T	T	F
T	F	F
F	T	T
F	F	T

4. (a) (i)

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\neg(\boldsymbol{p} \wedge \boldsymbol{q})$	$\neg \boldsymbol{p}$	$\neg \boldsymbol{q}$	$\neg \boldsymbol{p} \vee \neg \boldsymbol{q}$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

(ii) Yes
(b) $p \underline{\vee q}$

Chapter 10

Exercise 10.1

1. 0.01
2. (a) $\frac{5}{20}$
(b) $\frac{15}{20}$
3. (a) $\frac{3}{12}$
(b) $\frac{9}{12}$

Exercise 10.2

1.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	2	3	4	5
$\mathbf{2}$	3	4	5	6
$\mathbf{3}$	4	5	6	7
$\mathbf{4}$	5	6	7	8

2.

Head	Dep. H
B	P
B	R
P	B
P	R
R	B
R	P

3.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	2	3	4	5
$\mathbf{2}$	3	4	5	6
$\mathbf{3}$	4	5	6	7
$\mathbf{4}$	5	6	7	8

4. (a) 9
(b)

$\mathbf{1}$	A	A	B	B	B	C	C	C
$\mathbf{2}$	B	C	B	A	C	C	A	B

Exercise 10.3A

1. (a) $\frac{8}{20}$
(b) $\frac{12}{20}$
(c) $\frac{13}{20}$
2.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Head	H1	H2	H3	H4	H5	H6
Tail	T1	T2	T3	T4	T5	T6

(a) $\frac{6}{12}$
(b) $\frac{8}{12}$
(c) $\frac{2}{12}$
(d) $\frac{9}{12}$
3. (a) $\frac{2}{11}$
(b) $\frac{2}{11}$
(c) $\frac{7}{11}$
4. (a) $\frac{2}{36}$
(b) $\frac{33}{36}$
(c) $\frac{7}{36}$
(d) $\frac{15}{36}$
5. (a) WW, WL, WD, LW, LL, LD, DW, DL, DD
(b) $\frac{4}{9}$
(c) $\frac{4}{9}$
6. (a) $\frac{8}{30}$
(b) $\frac{17}{30}$
(c) $\frac{5}{30}$
7.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	1	2	3	4	5	6
$\mathbf{2}$	2	4	6	8	10	12
$\mathbf{3}$	3	6	9	12	15	18
$\mathbf{4}$	4	8	12	16	20	24
$\mathbf{5}$	5	10	15	20	25	30
$\mathbf{6}$	6	12	18	24	30	36

(a) $\frac{8}{36}$
(b) $\frac{6}{36}$
(c) $\frac{3}{36}$
(d) $\frac{20}{36}$
(e) $\frac{4}{36}$
8. (a) 80
(b) (i) $\frac{50}{80}$
(ii) $\frac{15}{80}$
(iii) $\frac{55}{80}$
9. (a) Andrew Fareeda Caitlin

HL	HL	HL
HL	HL	SL
HL	SL	SL
HL	SL	HL
SL	SL	SL
SL	SL	HL
SL	HL	HL
SL	HL	SL

(b) 8
(c) $\frac{2}{8}$
(d) $\frac{3}{8}$
(e) $\frac{7}{8}$

Exercise 10.3B

1. $\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}$
(a) $\frac{1}{4}$
(b) $\frac{3}{4}$
(c) 60
(d) 30
(e) 90
2. HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
(a) $\frac{1}{8}$
(b) $\frac{3}{8}$
(c) $\frac{7}{8}$
(d) $\frac{7}{8}$
(e) 12
(f) 84
3. (a) (i) $\frac{120}{300}$
(ii) $\frac{165}{300}$
(b) (i) 52
(ii) 143
4. (a) (i) $\frac{24}{100}$ (ii) $\frac{74}{100}$
(b) (i) 209
(ii) 814

Exercise 10.4

1. (a) $\frac{12}{32}$
(b) $\frac{20}{32}$
2. (a) $\frac{6}{16}$
(b) $\frac{3}{16}$
(c) $\frac{9}{16}$
3. (a) $\frac{6}{24}$
(b) $\frac{4}{24}$
(c) $\frac{10}{24}$
(d) $\frac{18}{24}$
4. (a) 0.15
(b) 0.85
(c) 0.75
5. (a) $\frac{5}{28}$
(b) $\frac{19}{28}$
(c) $\frac{9}{28}$
6. (a) 1.2
(b) (i) 0.698
(ii) 0.151
(iii) 0.232
(c) (i) 464 (ii) 1396

Exercise 10.5

1. (a) 0.54
(b) Not independent;
$\mathrm{P}(A) \times \mathrm{P}(B)=0.2706 \neq 0.54$
2. 0.83
3. (a) 0.2975
(b) 0.9475
4. (a) (i) $\frac{174}{260}(0.669)$
(ii) $\frac{5}{260}(0.0192)$
(b) (i) 0.379
(ii) 0.810
5. (a) 0.0125 (3 s.f.)
(b) 0.150 (3 s.f.)
(c) 0.881 (3 s.f.)
6. (a) $\frac{3}{12}$
(b) $\frac{5}{12}$
7. (a) 0.655 (3 s.f.)
(b) 0.345 (3 s.f.)
(c) 0.891 (3 s.f.)
(d) 0.818 (3 s.f.)

Exercise 10.6A

1. (a)

(b) (i) 0.48
(ii) 0.66
(iii) 0.34
(c) (i) 0.495
(ii) 0.7975
2. (a) 0.33 (b) 0.18 (c) 0.82
3. (a)

(b) 0.18
(c) 0.81
(d) 0.07
(e) 0.19
4. first kick second kick

(a) 0.0225
(b) 0.255
(c) 0.9775
5. (a) Carmen

Jermaine

(b) (i) 0.475 (3 s.f.)
(ii) 0.0952 (3 s.f.)
(iii) 0.245 (3 s.f.)
(iv) 0.430 (3 s.f.)

Exercise 10.6B

1. (a)

$\begin{array}{ll}\text { (b) (i) } \frac{2}{8} & \text { (ii) } \frac{2}{8}\end{array}$
2. (a)

(b) (i) $\frac{20}{24}$
(ii) $\frac{10}{24}$
(iii) $\frac{17}{24}$
3. (a) 80
(b) (i) $\frac{37}{80}$
(ii) $\frac{23}{80}$
(iii) $\frac{39}{80}$
(iv) $\frac{50}{80}$
(v) $\frac{30}{80}$

Exercise 10.7

1. (a) $\frac{12}{13}$
(b) $\frac{6}{13}$
(c) $\frac{6}{13}$
2. (a) $\frac{4}{25}$
(b) $\frac{12}{25}$
3. (a) $\frac{28}{153}(0.183)$
(b) $\frac{45}{153}(0.294)$
(c) $\frac{125}{153}(0.817)$
4. (a) $\frac{83}{225}(0.369)$
(b) $\frac{142}{225}(0.631)$
(c) $\frac{81}{225}(0.36)$
5. (a) $\frac{14}{95}(0.147)$
(b) $\frac{81}{95}(0.853)$
(c) $\frac{48}{95}(0.505)$
6. (a) $\frac{10}{32}(0.3125)$
(b) $\frac{30}{32}(0.9375)$
(c) $\frac{3}{496}(0.00605)$
(d) $\frac{87}{496}(0.175)$
7. (a)

	\mathbf{R}	\mathbf{Y}	\mathbf{G}	$\mathbf{B r}$	$\mathbf{B l}$	\mathbf{P}	$\mathbf{B k}$
\mathbf{R}	-	3	4	5	6	7	8
\mathbf{Y}	3	-	5	6	7	8	9
\mathbf{G}	4	5	-	7	8	9	10
$\mathbf{B r}$	5	6	7	-	9	10	11
$\mathbf{B l}$	6	7	8	9	-	11	12
\mathbf{P}	7	8	9	10	11	-	13
$\mathbf{B k}$	8	9	10	11	12	13	-

(b) (i) $\frac{6}{42}$
(ii) $\frac{34}{42}$
(iii) $\frac{4}{42}$
8. (a) (i) $\frac{110}{140}$
(ii) $\frac{77}{140} \quad$ (iii) $\frac{46}{140}$
(b) (i) 0.0577 (3 s.f.)
(ii) 0.412 (3 s.f.)
(iii) 0.384 (3 s.f.)

Exercise 10.8

1. (a) (i) $\frac{26}{100}$
(ii) $\frac{12}{40}$
(b) $\frac{46}{60}$
2. (a)

(b) 19
$\begin{array}{lll}\text { (c) (i) } \frac{19}{100} & \text { (ii) } \frac{40}{57} & \text { (iii) } \frac{19}{59}\end{array}$
3. (a) $\frac{42}{150}$
(b) $\frac{42}{67}$
(c) $\frac{18}{43}$ practice 10
4. $\frac{4}{8}$
5. (a) $\frac{17}{60}$
6. (a)

Mixed examination

Exam-style questions 10

1. (a) 0.1
(b) 0.2
(c) 0.8
2. (a) $\frac{2}{9} ~\left(\begin{array}{lll}\text { (b) } \frac{1}{9} & \text { (c) } \frac{3}{9}\end{array}\right.$
(b) $\frac{23}{60}$
(c) $\frac{40}{60}$

	Over 18's	$\mathbf{1 8}$ or under	Total
Have cars	20	12	32
Do not have cars	28	20	48
Total	48	32	80

(b) $\frac{12}{80}$
(c) $\frac{48}{80}$
6. GG, GS, GB, SG, SS, SB, BG, BS, BB
(a) 9
(b) (i) $\frac{1}{9}$
(ii) $\frac{4}{9}$
(iii) $\frac{6}{9}$
7. (a)

12. (a) (i) Walk, given that they rode to school by bike.
(ii) Travelled by car, given that they did not ride by bike.
(iii) Did not ride by bike, given that they walked and travelled by car.
(b) (i) $\frac{5}{13}$
(ii) $\frac{27}{35}$
(iii) $\frac{4}{5}$

Chapter 11

Exercise 11.1

1. (a)

(b)

(c)

(d)

(e)

(f)

(h)

(i)

(j)

2. (a) 0.0446 (3 s.f.)
(b) 0.816 (3 s.f.)
(c) 0.316 (3 s.f.)
(d) 0.183 (3 s.f.)
(e) 0.788 (3 s.f.)
(f) 0.0287 (3 s.f.)
(g) 0.302 (3 s.f.)
(h) 0.685 (3 s.f.)
(i) 0.302 (3 s.f.)
(j) 0.341 (3 s.f.)
3. (a) (i)

(ii)

(b) Areas are equal. (c) 0.0668 (3 s.f.)
4. Their sum is equal to 1 .

Exercise 11.2

1. (a) (i)

(ii)

(iii)

(iv)

(b) (i)

(ii)

(iii)

(iv)

2. (a) (i) 0.159 (3 s.f.)
(ii) 0.988 (3 s.f.)
(iii) 0.136 (3 s.f.)
(iv) 0.514 (3 s.f.)
(b) (i) 0.580 (3 s.f.)
(ii) 0.217 (3 s.f.)
(iii) 0.495 (3 s.f.)
(iv) 0.0358 (3 s.f.)
3. (a) 0.0712 (3 s.f.)
(b) 0.141 (3 s.f.)
(c) 0.429 (3 s.f.)
(d) 0.791 (3 s.f.)
(e) 0.136 (3 s.f.)
4. 0.0668 (3 s.f.)

Exercise 11.3

1. (a) 0.922 (3 s.f.)
(b) 0.653 (3 s.f.)
(c) 0.972 (3 s.f.)
2. (a) (i) 0.894 (3 s.f.)
(ii) 0.994 (3 s.f.)
(iii) 0.733 (3 s.f.)
(b) (i) 96
(ii) all 100
(c) No
3. (a) 0.330 (3 s.f.)
(b) 67.6% (3 s.f.)
(c) 0.153 (3 s.f.)
(d) 92
4. (a) 97.7% (3 s.f.)
(b) 97.7% (3 s.f.)
(c) 11.3% (3 s.f.)
5. (a) 16
(b) 3
(c) 126
(d) 5
6. (a) (i) 0.952 (3 s.f.)
(ii) 0.00621 (3 s.f.)
(iii) 0.894 (3 s.f.)
(iv) 0.0478 (3 s.f.)
(b) (i) 1401
(ii) 67

Exercise 11.4

1. 0.961 (3 s.f.)
2. 0.841 (3 s.f.)
3. (a) 0.141 (3 s.f.) \quad (b) 72.8 (3 s.f.)
4. 0.775 (3 s.f.)
5. (a) (i) 0.0668 (3 s.f.)
(ii) 0.977 (3 s.f.)
(iii) 0.930 (3 s.f.)
(b) (i)

(ii) 324 (3 s.f.)
6. $x=141$ (3 s.f.), $y=179$ (3 s.f.)
7. 40.6 mm to 47.7 mm

Mixed examination practice 11

Exam-style questions 11

1. (a) (i) 0.68
(ii) 0.95
(b) (i) 0.9998 (4 s.f.)
(ii) 0.919 (3 s.f.)
2. 0.961 (3 s.f.)
3. (a) 0.150 (3 s.f.)
(b) 0.245 (3 s.f.)
(c) 0.897 (3 s.f.)
4. (a) 0.933 (3 s.f.)
(b) 0.988 (3 s.f.)
(c) 0.598 (3 s.f.)
5. (a) 0.141 (3 s.f.)
(b) 69.8 m (3 s.f.)
(c) 17 (not including Yurek)
6. (a) (i) 0.997 (3 s.f.)
(ii) 0.932 (3 s.f.)
(b) 76.8 (3 s.f.)
7. (a) 0.994 (3 s.f.)
(b) (i) 0.988 (3 s.f.)
(ii) 0.0124 (3 s.f.)
(c) Fewer; with smaller σ the distribution is narrower, so the area under the curve to the left of 230 will be smaller.

Past paper questions 11

1. (a) $\mathbf{a}=5.1 \mathrm{~m}, \mathbf{b}=5.2 \mathrm{~m}, \mathbf{c}=4.7 \mathrm{~m}$
(b) 0.933 (3 s.f.)
(c) 0.234 m (3 s.f.)
2. (a) (i) 68% (ii) 102
(b) (i)

(ii) -1.73 (3 s.f.)
(iii) 4.17% (3 s.f.)
(c) 91.2% (3 s.f.)
(d) 5.03 (3 s.f.)

Chapter 12

Exercise 12.1

1.

	Independent variable	Dependent variable	Correlation
(a)	Amount of alcohol consumed	Reaction time	Yes
(b)	Number of people in household	Monthly food expenditure	Yes
(c)	Hours of exercise per week	Body mass	Yes

(d)	Time spent exercising	Blood sugar level	Yes
(e)	Car mileage	Value of second-hand car	Yes
(f)	Length of middle finger	Sprint time	No
(g)	Screen size of TV set	Price of TV set	Yes

Exercise 12.2

1.	(i)	(ii)	(iii)
Type of correlation	Independent variable	Dependent variable	
(a)	Positive	Height of student	Arm span
(b)	Negative	Age of car	Price of car
(c)	Positive	Mock exam score	Final exam score
(d)	Positive	Hours of sunshine	Maximum temperature
(e)	Negative	Number of goals conceded	Number of points scored

Exercise 12.3

1. (a)

(b)

(c)

(d)

(e)

Exercise 12.4

1. (a) -0.912 (3 s.f.)
(b) -0.00769 (3 s.f.)
(c) -0.863 (3 s.f.)
(d) 0.894 (3 s.f.)
(e) 0.912 (3 s.f.)

Exercise 12.5

1. (a) $y=1.0524 x-10.795$
(b) 0.839 (3 s.f.)
(c) Strong positive correlation
2. (a) $y=0.119439 x+5.9086$
(b) 0.586
(c) Moderate positive correlation
3. (a) -0.855 (3 s.f.)
(b) Strong negative correlation
(c) $y=-57.984 x+863.72$
(d) US\$545
4. (a) $y=0.12354 x+3.8279$
(b) $24.2 \mathrm{~cm}(3 \mathrm{~s} . f$.
(c) 0.905 (3 s.f.)
(d) Strong positive correlation
5. (a) 0.941 (3 s.f.)
(b) $m=0.647$ (3 s.f.)
$c=1.61$ (3 s.f.)
(c) 12.0% (3 s.f.)

Exercise 12.6

1. (a) 0.708 (3 s.f.)
(b) Positive correlation (moderate)
(c) 85%
(d) 58%
2. (a) $y=-0.06706 x+11.5061$
(b) $\$ 70,200$ (3 s.f.)
(c) 9.19% (3 s.f.)
(d) -0.181 (3 s.f.)
(e) Weak negative correlation, so estimates from the regression line are unreliable.
3. (a) $r=0.867$ (3 s.f.); Jessica's assertion is correct.
(b) $m=0.705$ (3 s.f.), $c=14.2$ (3 s.f.)
(c) 35 points
(d) Reliable as r is close to 1 , indicating that the correlation is strong.

Mixed examination practice 12

Exam-style questions 12

1. (a) Independent variable: mileage; dependent variable: price
(b) Negative correlation (strong: $r=-0.870$)
(c) 78400 miles, $\$ 10,105$
(d)

2. (a)

(b) Positive correlation
(c) $r=0.887$ (3 s.f.); strong positive correlation
3. (a) $y=1.025 x-6.912$
(b) 0.744 (3 s.f.)
(c) Positive correlation (moderate)
4. (a) 0.992 (3 s.f.)
(b) Very strong positive correlation
(c) $y=4.592 x+14.748$
(d) 30.8 amperes (3 s.f.)
(e) Not reliable; 18.5 is outside the range of x values in the data (extrapolation).
5. (a) -0.750 (3 s.f.)
(b) $m=-0.7245, c=13.9074$
(c) Unsuitable, as 15 is outside the range of x values in the data (extrapolation).
(d) $10.3^{\circ} \mathrm{C}$ (3 s.f.)
6. (a) $r=0.959$ (3 s.f.), indicating very strong positive correlation, so Mr Lawrence is right.
(b) $y=0.700 x-79.609$
(c) 1015 pence
(d) 3399 pence
7. (a) 0.820 (3 s.f.)
(b) Strong positive correlation
(c) $y=1.844 x-0.04663$
(d) (i) 27.8 s (3 s.f.)
(ii) 14.2 s (3 s.f.)

Past paper questions 12

1. (a), (c), (f) (Here, to save space, 1 cm represents 2 kg on the horizondal axis.)

(b) (i) 4 kg (ii) 2.85 kg (3 s.f.)
(iii) 30 cm (iv) 4.78 cm (3 s.f.)
(d) (i) 0.986 (3 s.f.)
(ii) Very strong positive correlation
(e) $y=1.825 x+22.7$
(g) (i) 32.6 cm (3 s.f.)
(ii) Not reliable, as 30 lies far outside the range of x values in the data.
2. (a) $y=-0.134 x+20.9$
(b) 17
(c) -0.756 (3 s.f.)
(d) Moderately strong negative correlation

Chapter 13

Exercise 13.1

1. (a) 1
(b) 2
(c) 6
(d) 3

Exercise 13.2

1. (a)

	\mathbf{B}_{1}	\mathbf{B}_{2}
\mathbf{A}_{1}	66.3	131.7
$\mathbf{A}_{\mathbf{2}}$	88.7	176.3

(b)

(c)

	\mathbf{B}_{1}	\mathbf{B}_{2}	\mathbf{B}_{3}	\mathbf{B}_{4}
\mathbf{A}_{1}	38.3	88.5	78.0	26.1
\mathbf{A}_{2}	33.8	78.2	68.9	23.1
\mathbf{A}_{3}	37.8	87.3	77.0	25.8

(d)

	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$
$\mathbf{A}_{\mathbf{1}}$	28.3	30.7
\mathbf{A}_{2}	42.7	46.3
\mathbf{A}_{3}	47.0	51.0

Exercise 13.3

1. (a) (i) 1
(ii) 0.207 (3 s.f.)
(iii) 0.649 (3 s.f.)
(b) (i) 2
(ii) 0.0277 (3 s.f.)
(iii) 0.986 (3 s.f.)
(c) (i) 6
(iii) 1.25×10^{-9} (3 s.f.)
(d) (i) 3
(ii) 52.9 (3 s.f.)
(iii) 0.0177 (3 s.f.)
(ii) 10.1 (3 s.f.)
2. (a) 12.9 (3 s.f.)
(b) 26.7 (3 s.f.)
(c) 23.9 (3 s.f.)
(d) 4.19 (3 s.f.)
3. (a) H_{0} : high performance at GCSE is independent of gender.
(b) 1
(c) 0.226 (3 s.f.)
(d) Do not reject H_{0}, as $0.226<3.84$.
4. (a) H_{0} : the age of drivers involved in accidents is independent of gender.
(b) 1
(c) 4.69 (3 s.f.)
(d) Reject H_{0}, as $4.69>4.61$; there is dependence between age and gender of drivers involved in accidents.
5. H_{0} : the genre of books borrowed by readers is independent of age. $\chi_{\text {calc }}^{2}=30.0$. Reject H_{0}, as $30.0>9.49$.

Mixed examination practice 13

Exam-style questions 13

1. H_{0} : cell phone ownership is independent of age; H_{1} : cell phone ownership is dependent on age. $\mathrm{df}=2$. Expected frequencies:

	$\mathbf{1 8 - 3 4}$	$\mathbf{3 5 - 5 4}$	$\mathbf{5 5 +}$
Own cell phone	367.3	530.6	839.1
Do not own cell phone	100.7	145.4	229.9

$\chi_{\text {calc }}^{2}=194.4, \chi_{5 \%}^{2}=5.99 ; \chi_{\text {calc }}^{2}>\chi_{5 \%}^{2}$, so reject H_{0}.
2. (a) Voting behaviour is independent of the type of work voters do.
(b) 2
(c) 14.8 (3 s.f.)
(d) Reject H_{0} and conclude that voting behaviour is dependent on the type of work voters do, because $\chi_{\text {calc }}^{2}>\chi_{10 \%}^{2}$.
3. (a) Low performance in GCSE Mathematics is independent of gender.
(b) 2
(c) 0.0903 (3 s.f.)
(d) Mrs Elwood will not reject H_{0}, because $\chi_{\text {calc }}^{2}<\chi_{5 \%}^{2}$.
4. (a) Ownership of smart phones is independent of age.
(b) 2
(c) 135 (3 s.f.)
(d) Reject H_{0}, since $\chi_{\text {calc }}^{2}>\chi_{5 \%}^{2}$.
5. H_{0} : voting behaviour is independent of the voter's age.
$\chi_{\text {calc }}^{2}=120.1>\chi_{5 \%}^{2}$, so reject H_{0} and conclude that voting behaviour is dependent on age.
6. (a) High performance in IB Mathematics is independent of the level at which the subject is studied.
(b) Level 5: 8.58, Level 6: 17.68, Level 7: 25.74
(c) H_{0} should not be rejected, since p-value (8.06\%) $>5 \%$.
7. H_{0} : involvement in accidents is independent of the driver's age.
$p=0.00274, \chi_{\text {calc }}^{2}=16.2$. Reject H_{0} because $p=0.274 \%<5 \%$ and, to confirm the conclusion, $\chi_{\text {calc }}^{2}>\chi_{5 \%}^{2}=7.78$.

Past paper questions 13

1. (a)

	Drama	Comedy	Film	News
Males	58	119	157	52
Females	86	98	120	61

(b) H_{0} : favourite TV programme type is independent of gender; H_{1} : favourite TV programme type is dependent on gender.
(c) 105
(d) 12.6 (3 s.f.)
(e) (i) 3
(ii) 7.815
(iii) Reject H_{0} and conclude that favourite TV programme type is dependent on gender.
2. (a) H_{0} : the size of dog is independent of the time of day.
(b) 14.9 (3 s.f.)
(d) Reject H_{0} and conclude that the size of dog present in the park is dependent on the time of day, because $\chi_{\text {calc }}^{2}>\chi_{5 \%}^{2}$.
3. (a) Favourite type of music is independent of age.
(b) 4
(c) 51.6 (3 s.f.)
(d) Reject H_{0}, because $\chi_{\text {calc }}^{2}>\chi_{5 \%}^{2}=9.488$, or $p=1.71 \times 10^{-10}<0.05$.

Chapter 14

Exercise 14.1

1. (a) -1
(b) 4
(c) $-\frac{11}{8}$
(d) 3
(e) $\frac{19}{4}$
2. (a) $\mathrm{AB}: \frac{1}{2} \quad \mathrm{BC}:-\frac{3}{4} \quad \mathrm{CD}: \frac{1}{2} \quad \mathrm{AD}:-2$
(b) AB and CD . They have equal gradients.
(c) CD and AD . The product of their gradients is -1 .
3. (a) AE: $-\frac{2}{3}$ CD: $\frac{1}{3}$ CE: $-\frac{2}{5}$ DE: $-\frac{3}{2}$ DF: $\frac{3}{2}$ GF: $\frac{1}{3}$
(b) CD and GF with equal gradients.
(c) AE and DF. Product of gradients equals -1 .
4. (a) AB: $\frac{4}{5} \quad$ CD: $-\frac{14}{5} \quad$ EF: $4 \quad$ GH: $\frac{14}{3} \quad$ IJ: $-\frac{14}{5}$
(b) (i) CD and IJ with equal gradients.
(ii) None of the lines are perpendicular. No pairing has a product $=-1$.

Exercise 14.2

1. (a) $y=2 x$
(b) $y=2 x+1$
(c) $y=3 x-1$
(d) $y=4 x-5$
(e) $y=-3 x$
(f) $y=-3 x+1$
(g) $y=-x+4$
2. (a) $y=5$
(b) $x=7$
(c) $y=4 x$
(d) $y=-2 x+3$
(e) $y=2 x-1$
3. $\mathrm{A}: y=3 x-1$
B: $y=-x+5$
C: $y=\frac{1}{2} x-3$

Exercise 14.3

1. (a) $6 x-y-11=0$
(b) $4 x-y+8=0$
(c) $5 x+y+6=0$
(d) $3 x+y-3=0$
(e) $4 x-2 y-9=0$
(f) $20 x-28 y+121=0$
2. (a) $2 x+y-4=0$
(b) $x+5 y-22=0$
(c) $x-7 y-9=0$
(d) $3 x-24 y-13=0$
(e) $7 x-5 y+27=0$
(f) $7 x-2 y-2=0$
3. (a) $2 x-y+1=0$
(b) $2 x-7 y-41=0$
4. (a) $7 x-y-23=0$
(b) $5 x+2 y+6=0$
(c) $15 x+10 y-47=0$
(d) $5 x+8 y=0$
5. (a) $x+3 y-3=0$
(b) $2 x+7 y-127=0$
(c) $3 x+4 y-36=0$
(d) $10 x-15 y+2=0$
6. (a) $\frac{1}{2}$
(b) $y=\frac{1}{2} x+\frac{5}{2}$
(c) $y=-2 x+19$
7. (a) $y=3 x-5$
(b) $y=-5 x+10$
(c) $y=-3 x+4$
(d) $y=\frac{4}{5} x-2$
8. (a) -1
(b) $y=-x-1$
(c) $x+y+1=0$

Exercise 14.4

1. (a)

(b)

(c)

(d)

(e)

(f)

2. (a)

(b)

(c)

(d)

(e)

(f)

(g)

3. (a)

(b) $y=3 x+1$
4. (a)

(b) $y=-5 x-3$
(c) $x-5 y+37=0$
5. (a) $(1.143,4)$
(b) $\left(\frac{1}{2}, 1\right)$
(c) $(2,-4)$
(d) $(-2,1)$
(e) $(4,1)$
(f) $(1.288,1.475)$

Mixed examination practice 14

Exam-style questions 14

1. (a) $2 x-y+13=0$
(b) $5 x+y+8=0$
(c) $3 x+4 y-19=0$
2. Line A: $y=3 x+8$

Line B: $y=\frac{3}{2} x$
Line C: $y=-5 x+6$
Line D: $y=\frac{1}{2} x-7$
3. (a) $5 \quad$ (b) $y=5 x-3$
4. (a)

(b) $2 x-3 y+6=0$
(c) $3 x+2 y+2=0$
5. (a), (c)

(b) (i) Any line of the form $y=-\frac{4}{5} x+c$
(ii) any line of the form $y=\frac{5}{4} x+c$
(d) $(2,2.4)$
(e) $x=2$ and $y=2.4$

Past paper questions 14

1. (a) 3
(b) $-\frac{1}{3}$
(c) $y=-\frac{1}{3} x+9$
(d) $(1.5,8.5)$
2. (a) $-\frac{2}{3}$
(b) $(4,3.5)$
(c) $8.06(\sqrt{65})$
(d) $7 x+4 y-42=0$
(e) Gradient of BC is $\frac{3}{2}$, so product of gradients is -1 . Yes, they are perpendicular.

Chapter 15

Exercise 15.1

1. (a) 50.2 cm
(b) 64.8 cm
(c) 79.7 cm
(d) 65.3 cm
(e) 70.9 mm
(f) 6.45 m
(g) 10.6 m
(h) 11.50 m
(i) 67.7 m
(j) 64.3 m
(k) 65.5 m
(l) 81.0 m
2. (a) 51.3°
(b) 47.8°
(c) 47.2°
(d) 42.5°
(e) 57.0°
(f) 63.4°
3. 26.0 cm
4. 3.53 m
5. 38.0°
6. 49.1°

Exercise 15.2

1. 1030 m
2. 765 m
3. (a) 71.2 m
(b) 426 m

Exercise 15.3

1. (a) 40.0 cm
(b) 40.0 cm
(c) 115°
2. (a) 147 m
(b) 35.9°
3. 72.5 m
4. 28.1°
5. 132 m

Exercise 15.4

1. (a) 53.6°
(b) 35.4
(c) 51.4
(d) 28.4°
(e) 151
(f) 52.2°
2. (a) 73.7
(b) 121
(c) 171
3. (a) 44.8°
(b) 45.5°
(c) 64.6°
4. (a) 32.0°
(b) 54.9°
(c) 43.7°
(d) 36.9°
(e) 69.6°
5. (a) 36.4 cm
(b) 72.0 mm
(c) 53.1 m
(d) 23.9 m
(e) 40.3 km
6. 12.2 cm
7. 32.4 m

Exercise 15.5

1. (a) 164 cm
(b) 136 cm
(c) 71.8 cm
2. (a) 55.2°
(b) 19.6°
3. (a) $176 \mathrm{~m} ; \mathrm{A}=43.7^{\circ} ; \mathrm{C}=31.3^{\circ}$
(b) $51.7 ; \mathrm{P}=27.6^{\circ}$;
$\mathrm{Q}=128.4^{\circ}$ ($1 \mathrm{~d} . \mathrm{p}$.)
(c) $\mathrm{P}=52.4^{\circ} ; \mathrm{Q}=104.8^{\circ}$;
$\mathrm{R}=22.8^{\circ}$ (1 d.p.)
(d) $\mathrm{A}=35^{\circ} ; \mathrm{B}=67.1^{\circ}$;
$\mathrm{C}=77.9^{\circ}$
4. 417 m
5. 31.1 km

Exercise 15.6

1. (a) $6470 \mathrm{~cm}^{2}$
(b) $2880 \mathrm{~mm}^{2}$
(c) $4290 \mathrm{~m}^{2}$
(d) $1590 \mathrm{~cm}^{2}$
(e) $490 \mathrm{~m}^{2}$

Exercise 15.7

1. (a) 396 m
(b) $34200 \mathrm{~m}^{2}$
(c) $45800 \mathrm{~m}^{2}$
(d) 1160 m
2. 3570 m
3. 64.2 m
4. $\mathrm{A}=39.9^{\circ} ; \mathrm{B}=105.3^{\circ}$;
$\mathrm{C}=34.8^{\circ}$ (1 d.p.)
5. 331 km
6. 17.4 km

Mixed examination practice 15

Exam-style questions 15

1. 104 m
2. 180 m and 73.7 m
3. (a) 2510 m
(b) 157° anticlockwise
4. 199 m
5. 56.6°
6. 319°
7. $47.9 \mathrm{~m}^{2}$
8. (a) 181 m
(b) 75.3°
(c) $86.5 \mathrm{~m}, 477 \mathrm{~m}$
(d) $11600 \mathrm{~m}^{2}$
9. 15.6 m
10.25 .7 m

Past paper questions 15
1.

(a) Point R on diagram
(b) $28.8^{\circ}\left(28^{\circ} 49^{\prime}\right)$
(c) 43.4 square units
2. (a) (i)

(ii) 4.21 cm
(b) (i) ACD is a straight line. B joins D at 20° to ACD. D must be on AC extended.
(ii) $\mathrm{CBD}=40^{\circ}$
3. (a) (i) 73.5°
(ii) 55.8 m
(b) 55.0 m
(c) 217 m

Chapter 16

Exercise 16.1

1. 56.6 cm
2. (a) 4.72 m
(b) 5.49 m
3. 28.3 cm
4. (a) 15 cm
(b) 7 cm
(c) 13.3 cm
5. (a) 28.3 cm
(b) 26.5 cm
6. 41.6 cm
7. (a) 5.83 m
(b) 5.22 m
(c) AH by 0.728 m

$$
(\mathrm{AH}=6.892, \mathrm{AG}=6.164)
$$

Exercise 16.2

1. (a) 56.6 cm
(b) 38.9°
2. (a) 14.4 cm
(b) 16.5 cm
(c) 29.0°
3. 61.1°
4. (a) 85.4 cm
(b) 89.0 cm
(c) 16.3°
5. $x=19.4^{\circ} \quad y=127^{\circ}$
6. (a) (i) 17.3 cm
(ii) 7.07 cm
(b) 78.2°
7. (a) $\mathrm{ME}=\mathrm{MF}=87.7 \mathrm{~cm}$
(b) 54.3°
8. (a) 107 cm
$\begin{array}{ll}\text { (c) } 20.1^{\circ} & \text { (b) } 20.3^{\circ}\end{array}$
(c) 20.1°

Exercise 16.3

1.

	(a) Total surface area	(b) Volume
1	$5027 \mathrm{~cm}^{2}$	$23695 \mathrm{~cm}^{3}$
2	$56 \mathrm{~m}^{2}$	$28 \mathrm{~m}^{3}$
3	$1504 \mathrm{~cm}^{2}$	$3840 \mathrm{~cm}^{3}$
4	$1414 \mathrm{~cm}^{2}$	$7069 \mathrm{~cm}^{3}$
5	$1531 \mathrm{~cm}^{2}$	$3528 \mathrm{~cm}^{3}$
6	$6082 \mathrm{~cm}^{2}$	$44602 \mathrm{~cm}^{3}$

2. (a) $33510 \mathrm{~cm}^{3}$
(b) $28953 \mathrm{~cm}^{3}$
(c) $386039 \mathrm{~cm}^{3}$
(d) $157080 \mathrm{~cm}^{3}$
(e) $837758 \mathrm{~cm}^{3}$
3. (a) $5027 \mathrm{~cm}^{2}$
(b) $5429 \mathrm{~cm}^{2}$
(c) $30561 \mathrm{~cm}^{2}$
(d) $16493 \mathrm{~cm}^{2}$
(e) $50265 \mathrm{~cm}^{2}$
4. (a) $r=6.20 \mathrm{~cm}$ (b) $x=10 \mathrm{~cm}$
5. (a) $29.4 \mathrm{~m}^{3}$
(b) $16 \mathrm{~m}^{2}$
6. (a) radius $=3.2 \mathrm{~cm}$, length $=25.6 \mathrm{~cm}$
(b) $275 \mathrm{~cm}^{3}$

Mixed examination practice 16

Exam-style questions 16

1. (a) 11.3 cm
(b) 13.9 cm
2. (a) 71.1°
(b) 17.7°
3. 5.10 m
4. (a) $115000 \mathrm{~cm}^{3}$
(b) $12700 \mathrm{~cm}^{2}$
5. $2090 \mathrm{~cm}^{3}$
6. 25.5 cm and 76.4 cm
7. (a) (i) $7240 \mathrm{~cm}^{3}$
(ii) $1810 \mathrm{~cm}^{2}$
(b) $1810 \mathrm{~cm}^{3}$
(c) 7.56 cm
(d) No, total surface area of 4 smaller spheres ($2872 \mathrm{~cm}^{2}$) is more than the surface area of original sphere.

Past paper questions 16

1. (a) $1294.14 \mathrm{~cm}^{3}$ (2 d.p.)
(b) 6
(c) (i) $431 \mathrm{~cm}^{3}$
(ii) $0.000431 \mathrm{~m}^{3}$ or $4.31 \times 10^{-4} \mathrm{~m}^{3}$
2. (a)

(c) (i) $\mathrm{EG}=14.6 \mathrm{~cm}$
(ii) $=37.8^{\circ}$
(d) $392 \mathrm{~cm}^{2}$
(e) $458 \mathrm{~cm}^{3}$

Chapter 17

Exercise 17.1

1. (a) No
(b) Yes
(c) Yes
(d) No
(e) Yes
(f) Yes

Exercise 17.2

1. (a) 4
(b) -11
(c) -7
(d) $3 a-8$
2. (a) -19
(b) 12
(c) -11
(d) $11-10 a$
3. (a) 27
(b) 5
(c) -3
(d) $2 c^{2}-7 c+5$
4. (a) -147
(b) -15
(c) 429
5. (a) 9.1
(b) 1.9
(c) -10.5
(d) -1550
6. (a) $\frac{5}{9}$
(b) $-\frac{11}{5}=-2.2$
(c) 3
(d) $\frac{3+x}{x-1}$

Exercise 17.3

1. (a) $-4<x \leq 4,-5 \leq y<11$
(b) $x>-4, y \geq-2$
(c) $x \geq-5, y \geq-80$
(d) $-3<x \leq 6,3<y \leq 15$
(e) $x \geq-3, y \leq 12.8$
(f) $-6 \leq x \leq 4,-5.125 \leq y \leq 50$
2. (a)

$-11 \leq y \leq 41$

(b)

$$
3 \leq y<52
$$

(c)

$-105 \leq y \leq 48$
(d)

$-15.125<y<121$

Exercise 17.4

1. (a) (i) $x=0$
(ii) $y=0$
(b) (i) $x=0$
(ii) $y=0$
(c) (i) $x=-1$
(ii) $y=0$
(d) (i) $x=-1$
(ii) $y=0$
(e) (i) $x=-0.5$
(ii) $y=0$
(f) (i) $x=1.5$
(ii) $y=0$
(g) (i) $x=1.5$
(ii) $y=5$
(h) (i) $x=\frac{2}{3}$
(ii) $y=4$

Exercise 17.5

1. (a)

(b) $0 \leq f(x) \leq 2.24$; the curve does not exist beyond $x=1$, and lies above the x-axis for all values of $x<1$.
(c) $5 \leq g(x) \leq 7.24$; the graph of $g(x)$ is obtained by shifting the graph of $f(x)$ up by 5 units.
2. (a)

$\frac{1}{3} \leq f(x) \leq 27$
(b)

$$
2 \leq g(x) \leq 27.0
$$

(c)

$$
-2 \frac{2}{3} \leq h(x) \leq 27.0
$$

(d) $g(x)+h(x)=2 f(x)$, so the range is $\frac{2}{3} \leq y \leq 54$
3. (a)

(b)

(c)

(d)

4. (a)

Point of intersection: $(1,1)$
(b)

Points of intersection: $(-2.48,-5.95)$ and $(1,1)$
(c)

Point of intersection: $(-1.26,2.26)$
(d)

Points of intersection: $(-0.82,1.18)$ and (1.82, 3.82)

Exercise 17.6

1. (a)

\boldsymbol{x}	-2	-1	0	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	8	3	0	-1	0	3	8
$\boldsymbol{g}(\boldsymbol{x})$	4	3	2	1	0	-1	-2

(b)

(c) $-1,2$
2. (a)

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	-17	-3	-1	1	15
$\boldsymbol{g}(\boldsymbol{x})$	-10	-5	0	5	10

(b)

(c) $-1.5,-0.2,1.7$
3. (a)

\boldsymbol{x}	-4	-3	-2	-1	0	1	2
$\boldsymbol{f}(\boldsymbol{x})$	-1.99	-1.96	-1.89	-1.67	-1	1	7
$\boldsymbol{g}(\boldsymbol{x})$	-7	-2	1	2	1	-2	-7

(b)

(c) $-3.0,0.5$
4. (a)

(b) 3
(c) $-1.5,1.7,2.8$
5. (a) (i) 3
(ii) $-1.03,-0.207,1.01$
(b) (i) 1
(ii) 1.71
(c) (i) 1
(ii) 0.330
(d) (i) 2
(ii) $0.847,3.47$
(e) (i) 3
(ii) $-1.73,-1.29,1.64$
(f) (i) 3
(ii) $-1.79,1.54,2$
6. (a) $-1.37,4.37$
(b) $-2.93,-0.363,0.627$
(c) $-3.25,-1.62,0.878$
(d) $-2.24,2.24$
(e) $1.17,2.29$
(f) $-2.96,-0.633$
(g) $-4.06,-1.12,2.18$
7. (a) $t=81.3$
(b) $x=0$
(c) $t=0.928$
(d) $x=-0.0692$
(e) $x=-3.06,0.969$
(f) $x=-2.29,-0.671$
(g) $x=-2.71,-1.06$
(h) $x=1.45$

Mixed examination practice 17
Exam-style questions 17

1. (a) -13
(b) 8
(c) (i) $7 a-13$
(ii) $7 a-27$
2. (a) $x \geq-3$
(b) $y \leq 13$
(c) $-3,0.25,2$
3. (a)

(i) $x=2$ (ii) $y=0$
(b)

(i) $x=\frac{7}{9}$
(ii) $y=4$
4.

5. (a)

\boldsymbol{x}	-3	-2	-1	0	1	2	3
$\boldsymbol{f}(\boldsymbol{x})$	40	17	6	1	-4	-15	-38
$\boldsymbol{g}(\boldsymbol{x})$	13	11	9	7	5	3	1

(b)

(c) -1.5
6. (a)

(b) 2
(c) $-2.2,2.4$

Chapter 18

Exercise 18.1

1. (a) $D=50+0.15 \mathrm{~m}$
(b) 400
(c) Safe Ride: it costs less (has a lower graph) for $m>400$
2. (a) $C(n)=6.50+0.035 n$
(b) $£ 52$
(c) 1840 units
3. (a) $C(n)=5.18+0.13 n$
(b) $£ 70.18$
(c) 650 units
4. (a) 60 visits
(b) (i) Gym Buddies
(ii) Fit Mates
(c) (i) At least $£ 24$
(ii) At least $£ 30$
5. (a) (i) 150
(ii) 120
(iii) 100
(b) $£ 180$
(c) $£ 200$
(d) $£ 160$

Exercise 18.2A

1. (a) (i) $(-1.5,-2.25)$
(ii) $x=-1.5$
(iii) $f(x) \geq-2.25$
(b) (i) $(3.5,-10.25)$
(ii) $x=3.5$
(iii) $f(x) \geq-10.25$
(c) (i) $(0.25,-5.875)$
(ii) $x=0.25$
(iii) $f(x) \leq-5.875$
(d) (i) $(0.667,7.67)$
(ii) $x=0.667$
(iii) $g(x) \geq 7.67$
(e) (i) $(-1,-16)$
(ii) $x=-1$
(iii) $g(x) \geq-16$
(f) (i) $(0.5,-1.25)$
(ii) $x=0.5$
(iii) $g(x) \geq-1.25$
(g) (i) $(0.75,2.22)$
(ii) $x=0.75$
(iii) $h(x) \geq 2.22$
(h) (i) $(3.5,13.9)$
(ii) $x=3.5$
(iii) $f(x) \leq 13.9$
2. (a) $(0,1.44)$
(i) Max 1.44
(ii) $x=0$
(iii) $f(x) \leq 1.44$
(b) $(2.5,10)$
(i) $\operatorname{Max} 10$
(ii) $x=2.5$
(iii) $g(x) \leq 10$
(c) $(-1.7,8)$
(i) $\operatorname{Min} 8$
(ii) $x=-1.7$
(iii) $h(x) \geq 8$

Exercise 18.2B

1. $(-1.83,0)$ and $(3.83,0)$
2.

(a) (i) $f(x)$
(ii) $g(x)$
(iii) $h(x)$
(b) $f(x):(0,-5) ; g(x):(0,5) ; h(x):\left(0, \frac{25}{4}\right)$
3. (a) (i) $(-2,0)$ and $(2,0)$
(ii) $(0,-12)$
(b) (i) $(-1.33,0)$ and $(1.33,0)$
(ii) $(0,16)$
(c) (i) $(-1.27,0)$ and $(6.27,0)$
(ii) $(0,8)$
(d) (i) $(-2,0)$ and $(1.33,0)$
(ii) $(0,8)$
(e) (i) $(-2.92,0)$ and $(3.42,0)$
(ii) $(0,-20)$
(f) (i) $(1.64,0)$ and $(3.36,0)$
(ii) $(0,-23.6)$
4. (a) $(0,0)$ and $(5,0)$
(b) $x=2.5$
(c) $-8.4 \leq f(x) \leq 8.75$
5. (a) $\mathrm{P}(-6.82,0), \mathrm{Q}(-2.75,33.1), \mathrm{R}(0,18), \mathrm{S}(1.32,0)$
(b) $f(x) \leq 33.1$
(c) $x=-2.75$

Exercise 18.3

1. (a) 20.4 m
(b) 21.8 m
(c) 4.08 s
2. $43.8,82.7,132.6,193.7,265.9,349.1$
3. (a)

(b) $€ 9$ million
(c) $€ 53.8$ million
4. (a) 12 m
(b) 2 s
(c) 12.25 m
(d) 4.12 s
5. (a) (i) 15.3 m
(ii) 35.3 m
(b) (i) 13.7 m
(ii) 15.0 m
(c) 10.8 m

Mixed examination practice 18

Exam-style questions 18

1. (a) (i) $(0.9,-4.05)$
(ii) $x=0.9$ (iii) $y \geq-4.05$
(b) (i) $(0,7)$
(ii) $x=0$
(iii) $y \leq 7$
(c) (i) $(1.5,-30.25)$
(ii) $x=1.5$
(iii) $y \geq-30.25$
2. (a) $\operatorname{Max}(-0.333,11.7)$
(b) $x=-0.333$
(c) $f(x) \leq 11.7$
3. (a) $a=140, b=98$
(b) $\$ 630$
(c) 7 hours
4. (a) $135-x$
(c) 45 m by 90 m
5. (a) 34.2 m
(b) 240 m
(c) 40 m or 200 m
6. (a) (i) $£ 11.60$
(ii) $£ 29.00$
(b) Saif: $£ 10.35$; Jeevan: $£ 29.20$
(c) (i) MATHSMANAGER
(ii) At least $£ 3.20$

Past paper questions 18

1. (a) 25
(b) 13.7
(c) 0.535
(d) 54.0

Chapter 19

Exercise 19.1

1. (a) $y=0$
(b) $y=0$
(c) $y=5$
(d) $y=-4$
(e) $y=-4$
2. (a) $(0,1) ; 0.008 \leq g(x) \leq 15625$
(b) $(0,1) ; 4.096 \times 10^{-9} \leq g(x) \leq 2.44 \times 10^{8}$
(c) $(0,25) ; 0.0016 \leq g(x) \leq 7.63 \times 10^{11}$
(d) $(0,78125) ; 0.008 \leq g(x) \leq 78125$
(e) $(0,0.0016) ; 0.0016 \leq g(x) \leq 3125$
3. (a) (i) $y=0$
(ii) $(0,1)$
(iii) $0<f(x) \leq 16$
(b) (i) $y=0$
(ii) $(0,1)$
(iii) $0<f(x) \leq 64$
(c) (i) $y=0$
(ii) $(0,1)$
(iii) $0<f(x) \leq 256$
(d) (i) $y=0$
(ii) $(0,1)$
(iii) $0<f(x) \leq 8$
(e) (i) $y=5$
(ii) $(0,6)$
(iii) $5<f(x) \leq 7781$
(f) (i) $y=-4$
(ii) $(0,-3)$
(iii) $-4<f(x) \leq-3$
(g) (i) $y=0$
(ii) $(0,2)$
(iii) $0<f(x) \leq 31250$
(h) (i) $y=0$
(ii) $(0,4)$
(iii) $0<f(x) \leq 3.91 \times 10^{7}$
4. (a) (i) 1
(iii) 0.2
(b) (i) 1
(iii) 0.04
(c) (i) 125
(iii) 5
(d) (i) 1.28×10^{-5}
(iii) 5.12×10^{-7}
(e) (i) 1.608
(iii) 0.3216
(f) (i) 32640
(iii) 326.4
(g) (i) 5.27×10^{-8}
(iii) 5.27×10^{-11}
(h) (i) 1
(iii) 0.229
(i) (i) 34
(iii) 12.4
(j) (i) 0.0238
(iii) 0.00134
(ii) 125
(iv) 2.24
(ii) 15625
(iv) 5
(ii) 1.95×10^{6}
(iv) 625
(ii) 0.2
(iv) 6.4×10^{-5}
(ii) 201
(iv) 3.60
(ii) 3.264×10^{10}
(iv) 3.264×10^{5}
(ii) 52.7
(iv) 1.67×10^{-6}
(ii) 83.8
(iv) 2.09
(ii) 693
(iv) 56.2
(ii) 134
(iv) 0.100

Exercise 19.2

1. (a) (i) 52996
(ii) 60876
(iii) 63965
(b) (i) 11.3 years
(ii) 37.1 years
(c) (i) 35.0 years
(ii) 55.5 years
2. (a) (i) 6.87 million (ii) 8.21 million
(b) 2031
(c) 2007
3. (a) 200 mg
(b) (i) 117 mg
(ii) 68.7 mg
(c) 12.1 hours
4. (a) 420
(b) 488
(c) 2540
(d) 6250
(e) 23.1 hours
(f) 29.3 hours
5. (a) (i) $95.3^{\circ} \mathrm{C}$
(ii) $88.7^{\circ} \mathrm{C}$
(iii) $75.0^{\circ} \mathrm{C}$
(b) 93.0 minutes
(c) 382 minutes

Exercise 19.3

1. (a) (i) $(0,6)$
(ii) $(-3,0),(1,0),(2,0)$
(b) (i) $(0,3)$
(ii) $(-3,0),(1,0)$
(c) (i) $(0,8)$
(ii) $(-4,0),(-2,0),(1,0)$
(d) (i) $(0,6)$
(ii) $(-3,0),(-1,0),(0.4,0)$
(e) (i) $(0,-4)$
(ii) $(-2,0),(1,0)$
(f) (i) $(0,0)$
(ii) $(-6,0),(0,0),(1,0)$
(g) (i) $(0,6)$
(ii) $(-3,0),(0.5,0),(2,0)$
(h) (i) $(0,-8)$
(ii) $(-2.67,0),(2.67,0)$
(i) (i) $(0,4)$
(ii) $(-4,0),(-1,0),(0.5,0),(1,0)$
(j) (i) $(0,-9)$
(ii) $(-3,0),(-1,0),(3,0)$
2. (a) (i) $(0,-12) ;(-3,0),(4,0)$
(ii) $-12.25 \leq f(x) \leq 8$
(b) (i) $(0,1) ;(-0.140,0),(7.14,0)$
(ii) $-7 \leq f(x) \leq 13.25$
(c) (i) $(0,0) ;(-2,0),(0,0),(4,0)$
(ii) $-96 \leq f(x) \leq 64$
(d) (i) $(0,6) ;(-2,0),(1,0),(3,0)$
(ii) $-4.06 \leq f(x) \leq 18$
(e) (i) $(0,3) ;(-0.538,0),(2.33,0)$
(ii) $-24 \leq g(x) \leq 3.39$
(f) (i) $(0,4) ;(-3.06,0)$
(ii) $-24 \leq g(x) \leq 226$
(g) (i) $(0,10) ;(-1.19,0),(1.20,0)$
(ii) $-19.3 \leq f(x) \leq 10.0$
(h) (i) $(0,6)$
(ii) $5.75 \leq f(x) \leq 20$

Exercise 19.4

1. (a) (i) 1.4115
(ii) 1.4535
(iii) 1.4262
(b) 1.46
2. (a)

Decade	1970	1990	2010	
Population (billions)	Actual Estimated from model	3.706618	5.278640	6.848933
Percentage error	0.123%	0.114%	0.0831%	

(b) (i) 7.58 billion
(ii) 8.25 billion
(iii) 8.85 billion
3. (a)

Year	2000	2002	2004	2006
Price of silver on 1 January	$\$ 15.78$	$\$ 4.68$	$\$ 9.09$	$\$ 18.57$

(b) US\$15.34 per ounce
(c) 0.11%
4. (a)

Year	2002	2004	2006	2008	2010	2012
Price of gold on 1	$\$ 278$	$\$ 293.24$	$\$ 387.29$	538.58	$\$ 768.80$	$\$ 1116.07$
January						

(b) US $\$ 925.52$ per ounce
(c) 8.43%

Mixed examination practice 19

Exam-style questions 19

1. (a) $(0,-4)$
(b) $(-1.22,0),(-0.47,0),(1.15,0),(3.04,0)$
(c) $-128 \leq g(x) \leq 16.6$
2. (a) $(0,1)$
(b) $y=0$ (c) $\quad f(x)>0$
3. (a) $A=3$
(b) $y=5$
4. (a)
(i) $47.3^{\circ} \mathrm{C}$
(ii) $37.8^{\circ} \mathrm{C}$
(iii) $25.7^{\circ} \mathrm{C}$
(iv) $24.6^{\circ} \mathrm{C}$
(b) (i) $0.112 \mathrm{~h}(6.73 \mathrm{~min})$
(ii) $0.982 \mathrm{~h}(58.9 \mathrm{~min})$
(iii) 1.50 h
5.

Year	2000	2002	2004	2006	2008	2010
Debt (\% of GDP)	30.8	28.1	31.4	34.5	37.8	48.1

6. $C_{0}=8 \mathrm{mg} / \mathrm{ml}$ and $k=-0.0851$
7. (a) (i) 28040 MW
(ii) 46680 MW
(iii) 47340 MW
(iv) 40090 MW
(b) (i) $8.58 \mathrm{a} . \mathrm{m}$. and $9.37 \mathrm{p} . \mathrm{m}$.
(ii) 10.32 a.m. and $8 \mathrm{p} . \mathrm{m}$

Past paper questions 19

1. (a)

(b) $x=-4$
(c)

(d) $(-2.85078,-2.35078)$ or ($0.35078,0.85078$)
(e) 1
(f) $y=-x-5$
2. (a) 1800
(b) 145800
(c) 33.5 hours

Exercise 20.2

1. (a) $-\frac{5}{7 x^{2}}$
(b) $10 x^{4}+2 x^{-3}$
(c) $3 x^{2}+\frac{9}{4 x^{3}}$
(d) $1+\frac{3}{2 x^{3}}$
(e) $-15 x^{-6}-22 x$
2. (a) $8 x^{7}-5 x^{-6}$
(b) $32 x^{3}-6 x^{2}-4 x^{-5}+13$
(c) $-\frac{3}{x^{4}}-10$
(d) $-\frac{35}{x^{8}}+4$
(e) $9+\frac{3}{5 x^{2}}$
3. (a) $1-9 x^{2}+25 x^{4}-49 x^{6}$
(b) $8 x^{-3}$
(c) $10-27 x^{-4}-2 x^{-2}$
(d) $\frac{6}{7} x-\frac{10}{x^{3}}$
(e) $-\frac{3}{x^{4}}+\frac{20}{x^{6}}$
4. (a) $6 x^{2}-14 x-4$
(b) (i) -12
(ii) 48
(iii) -4
(c) 16; gradient of the $f(x)$ curve at the point where $x=-1$
5. (a) $8-6 x^{2}$
(b) (i) 8
(ii) -16
(iii) -46

Exercise 20.3

1. (a) $10 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $25 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $13 \mathrm{~m} \mathrm{~s}^{-1}$; velocity of the particle at $t=3$
2. (a) $14-20 t$
(b) (i) 4
(ii) 0
3. (a) $6 \pi=18.8$
(b) $10 \pi=31.4$

Exercise 20.4

1. (a) 1500
(b) -36
(c) -13
(d) 18
(e) -4
(f) -42
(g) 10
(h) -0.5
(i) -32
(j) -10
(k) 3.20
(l) -1
2. (a) (i) $16 q$
(ii) 160
(b) (i) $10 q$
(ii) 1200
(c) (i) $5+6 q$
(ii) 485
(d) (i) $6 q-10$
(ii) 74
(e) (i) $6 q^{2}-18 q+45$
(ii) 236445
3. (a) $2 x-4$
(b) 2
(c) 6
4. (a) $3 x^{2}-8 x$
(b) 28
(c) $(0.667,6.52)$ and $(2,0)$
5. (a) $2-\frac{1}{x^{2}}$
(b) 1
(c) $(-0.333,-3.67)$ and $(0.333,3.67)$
6. (a) $\$ 115 \quad$ (b) 45
7. (a) $28-20 t$
(b) -20

Exercise 20.5

1. (a) $y=24 x-58$
(b) $y=6 x+13$
(c) $y=4 x+12$
(d) $y=0.25 x+0.25$
(e) $y=17 x-7$
(f) $y=-0.25 x+1$
(g) $y=0.75 x+5.75$
(h) $y=-3.56 x+6.96$
2. (a) $y=-7 x-21$
(b) $y=13 x-56$
(c) $y=42.5 x+0.25$
(d) $y=-12 x+29$
(e) $y=-49 x+36$
(f) $y=5$
3. (a) $6 x^{2}-2 x+4$
(b) 24
(c) 21
(d) $y=24 x-27$
4. (a) $-\frac{x}{8}$
(b) $\frac{1}{8}=0.125$
(c) $\frac{143}{16}=8.94$
(d) $2 x-16 y+145=0$

Exercise 20.6

1. (a) $y=-0.0417 x+38.2$
(b) $y=-0.167 x-5.5$
(c) $y=-0.25 x+7.75$
(d) $y=-4 x+2.375$
(e) $y=-0.0588 x+10.1$
(f) $y=4 x+9.5$
(g) $y=-1.33 x+9.92$
(h) $y=0.281 x+1.21$
2. (a) $y=0.143 x+0.429$
(b) $y=-0.0769 x-29.8$
(c) $y=-0.0235 x-21.0$
(d) $y=0.0833 x-7.25$
(e) $y=0.0204 x+11.5$
(f) $x=-1$
3. $y=-\frac{1}{3} x-\frac{4}{3}$ or $y=-0.333 x-1.33$
4. $y=-0.125 x+13.5$

Mixed examination practice 20

Exam-style questions 20

1. $4 x^{3}-21 x^{2}-9$
2. (a) $2 x-8$
(b) -2
(c) 7
3. (a) $\frac{\mathrm{d} C_{\mathrm{T}}}{\mathrm{d} q}=120-2 q-0.015 q^{2}$
(b) 16
4. (a) $-2 \mathrm{~m} \mathrm{~s}^{-1} \quad$ (b) $-5 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $-6 \mathrm{~m} \mathrm{~s}^{-1}$; velocity of the particle at $t=3.5$
5. (a) (i) $6 t^{2}-8 t+4$
(ii) $12 t-8$
(b) (i) $12 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $68 \mathrm{~m} \mathrm{~s}^{-1}$
(c) (i) $4 \mathrm{~m} \mathrm{~s}^{-2}$
(ii) $40 \mathrm{~m} \mathrm{~s}^{-2}$
(d) $\frac{2}{3} \mathrm{~s}$
6. (a) -2 ; the y-coordinate of the point on the curve where $x=1$
(b) 9; the gradient of the curve at the point where $x=1$
(c) $y=9 x-11$
7. (a) -6
(b) $\frac{1}{6}$
(c) 1
(d) $y=-6 x+7$
(e) $y=\frac{1}{6} x+\frac{5}{6}$
8. (a) $3 x^{3}-5 x^{2} \quad$ (b) $9 x^{2}-10 x$
(c) (i) 56
(ii) $-\frac{1}{56}$
(d) (i) $y=56 x+68$
(ii) $y=-\frac{1}{56} x-\frac{1233}{28}=-0.0179 x-44.0$

Past paper questions 20

1. (a) (i) $f_{1}^{\prime}(x)=1$
(ii) $f_{2}^{\prime}(x)=-2 x$
(b) $x=-\frac{1}{2}$
(c)

2. (a) $6 x^{2}-10 x+3$
(b) 7
(c) $y=7 x-11$
3. (a) 2
(b) $f^{\prime}(x)=2 x-3$
(c) $(2.5,-5.25)$
(d) $(1.25,-6.1875)$
(e) (i) $1 \quad$ (ii) $y=x-8$
(f) $x=1.5$
(g) (1.5, -6.25); gradient 0

Chapter 21

Exercise 21.1

1. Increasing for $0<x<2$; decreasing for $x<0$ and $x>2$
2. (a) $x<-1.94$ and $x>0.943$
(b) $-1.94<x<0.943$
3. (a) (i) $x>4$
(ii) $x<4$
(b) (i) $x>-2.25$
(ii) $x<-2.25$
(c) (i) $x>0.500$
(ii) $x<0.500$
(d) (i) $x \in \mathbb{R}$
(ii) None
(e) (i) $x<-2$ and $x>2$
(ii) $-2<x<2$
(f) (i) $x<-1$ and $x>2$
(ii) $-1<x<2$
(g) (i) $x<0$ and $x>6$
(ii) $0<x<6$
(h) (i) $x<-2.56$ and $x>1.56$
(ii) $-2.56<x<1.56$
4. $x<0.268$ and $x>3.73$
5. (a) $9+6 x-3 x^{2}$
(b) -15
(c) Decreasing
6. (a) $x^{2}-2 x-3$
(b) (i) 21
(ii) -4
(c) (i) Increasing
(ii) Decreasing

Exercise 21.2

1. (a) $\operatorname{Min}(-2,-4)$
(b) $\operatorname{Max}(4,16)$
(c) $\operatorname{Min}(3,-4)$
(d) $\operatorname{Max}(1.5,6.25)$
(e) $\operatorname{Max}(-0.333,0.185)$; $\min (1,-1)$
(f) $\operatorname{Max}(-1,1) ; \min (1,-3)$
(g) $\operatorname{Min}(-1,2) ; \max (1,6)$
(h) $\operatorname{Max}(-0.5,6) ; \min (0.5,4)$
(i) $\operatorname{Max}(0.667,4.19)$; $\min (2,3)$
(j) $\operatorname{Max}(-1,3)$; $\min (1,-5)$
2. Stationary points and classification as in $\mathbf{1}$. Gradient functions:
(a) $2 x+4$
(b) $8-2 x$
(c) $2 x-6$
(d) $3-2 x$
(e) $3 x^{2}-2 x-1$
(f) $3 x^{2}-3$
(g) $3-3 x^{2}$
(h) $12 x^{2}-3$
(i) $3 x^{2}-8 x+4$
(j) $5 x^{4}-5$
3. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-6 x-8$
(b) $\mathrm{P}(-0.915,-6.96)$ and $\mathrm{Q}(2.92,-35.0)$
(c) P-point ; Q - min point
4. (b) R: max; S: min
5. (a) $3 x^{2}-4$
(b) ± 1.15
(c), (d) $\operatorname{Max}(-1.15,3.08)$;

$$
\min (1.15,-3.08)
$$

6. $\operatorname{Max}(0,0) ; \min (4,-32)$
7. $\operatorname{Max}(-1,2) ; \min (1,-2)$

Exercise 21.3

1. Length $=$ width $=$

$$
\frac{40}{3}=13 \frac{1}{3}=13.3 \mathrm{~cm} ;
$$

height $=\frac{10}{3}=3 \frac{1}{3}=3.33 \mathrm{~cm}$
2. $6 \times 7=42$
3. 6 cm by 6 cm
4. 3 cm by 6 cm

Exercise 21.4

1. (a) $120-8 q$
(c) $£ 925,000$
2. (a) 80
(b) $\frac{\mathrm{dC}}{\mathrm{d} n}$ is negative to the left of $n=80$ and positive to the right of $n=80$; or $\frac{\mathrm{d}^{2} C}{\mathrm{~d} n^{2}}>0$ at $n=80$; or the graph is a parabola that opens upward and so has a unique minimum point.
3. (b) $12 x^{2}-160 x+400$
(c) $\frac{10}{3}=3.33 \mathrm{~cm}$
(d) Length $=$ width $=$ $\frac{40}{3}=13.3 \mathrm{~cm}$;
height $=\frac{10}{3}=3.33 \mathrm{~cm}$;
volume $=593 \mathrm{~cm}^{3}$
4. (c) $2808-\frac{27}{8} x^{2}$
(d) 28.84
(e) Length $=86.5 \mathrm{~cm}$; width $=28.8 \mathrm{~cm}$; height $=21.6 \mathrm{~cm}$
(f) $53997 \mathrm{~cm}^{3}$
5. (a) $320-8 n$
(b) $40 ; \frac{\mathrm{d} R}{\mathrm{~d} n}$ is positive to the left of $n=40$ and negative to the right of $n=40$; or $\frac{\mathrm{d}^{2} R}{\mathrm{~d} n^{2}}>0$ at $n=40$; or the graph is a parabola that opens downward and so has a unique maximum point.
(c) $\$ 6,400,000$
6. (c) $120 \pi r-6 \pi^{2} r^{2}$
(d) 6.37
(e) $2546 \mathrm{~cm}^{3}$

Mixed examination practice 21

Exam-style questions 21

1. (a) $x<0.268, x>3.73$
(b) $0.268<x<3.73$
2. (a) $21 x^{2}-12$
(b) 324
(c) Increasing
3. (a) $12 x-12 x^{2}$
(c) $\operatorname{Min}(0,3) ; \max (1,5)$
4. (a) $6 x^{2}-18 x-24$
(b) -1 and 4
(c), (d) $\operatorname{Max}(-1,16)$; $\min (4,-109)$
5. $R(0,5)$ and $S(4,37)$
6. $5000 \mathrm{~m}^{2} ; 50 \mathrm{~m} \times 100 \mathrm{~m}$
7. $r=3.74, h=7.49$
8. $200 \mathrm{~m} \times 200 \mathrm{~m}=40000 \mathrm{~m}^{2}$
9. Length $=$ width $=$ height
$=20 \mathrm{~cm}$; area $=2400 \mathrm{~cm}^{2}$
10. Length $=$ width $=25.2 \mathrm{~cm}$;
height $=12.6 \mathrm{~cm}$;
area $=1900 \mathrm{~cm}^{2}$

Past paper questions 21

1. (a) $f^{\prime}(x)=2 a x-4 x^{-2}=2 a x-\frac{4}{x^{2}}$
(b) -2
2. (a) 5.30
(b) $-0.042 x+1.245$
(c) (i) 24.3 m
(ii) 12.4 m
(d)
3. (b) $1-\frac{324}{x^{2}}$
(c) 18
(d) 36
(e) $a=36, b=39$
(f)

(g) $x>18$
4. (b) $y=\frac{300-4 x^{2}}{6 x}=\frac{150-2 x^{2}}{3 x}$
(d) $100-4 x^{2}$
(e) (i) $x=5, y=\frac{20}{3}$
(ii) $333 \frac{1}{3} \mathrm{~cm}^{3}$
5. (a) $y=2$
(b) Less than
(c) P is a local minimum

(e) 10.1 m

Glossary

A

acceleration the rate of change of velocity in relation to time
algebra a method of generalising problems in arithmetic
algorithm a systematic step-by-step process (a set of instructions) leading to a result
angle of depression angle between the horizontal and a lower line-of-sight line
angle of elevation angle between the horizontal and a higher line-of-sight line
arithmetic progression/sequence a list of numbers where the difference between consecutive numbers is constant
arithmetic series the sum of terms in an arithmetic sequence
asymptote a line approached by a curve but never reached
axis (pl. axes) a line which is used as a reference, e.g. on a graph

B

bar chart diagram in which information is arranged into vertical or horizontal blocks
bias influence within a sample of data that favours a particular member(s) of a population
biased sample a sample which is limited to a particular, possibly unrepresentative group
BIDMAS the order of operations in working out an arithmetical expression (Brackets, Indices, Division, Multiplication, Addition, Subtraction)
bivariate data data showing the relationship between two variables
boundary used in a grouped frequency table, to describe the top or bottom values of one class
box and whisker diagram statistical diagram to display a five-figure summary
break-even point the point at which the cost of production and income are the same

C

chi-squared statistic (χ^{2}) used in a two-way table to test observed values against expected values
chord a straight line which joins two points on a curve
coefficient a number which is used to multiply a variable commission amount (usually a percentage) charged by a financial institution for handling money
common difference the fixed difference between consecutive terms in an arithmetic sequence common ratio the fixed multiplier from each term to the next in a geometric sequence
complement of a set element(s) which are not included in the set
compound interest a system in which interest is recalculated at regular intervals to include previous interest accumulated
compound statement a logical statement containing two or more propositions
conditional probability probability based on the assumption that an event has already occurred
cone a solid with one vertex and a circular base
conjunction a compound statement where two propositions are connected by 'and'
connective a symbol that links two propositions constant a quantity with a fixed value continuous data data that can be measured contradiction a compound statement that is always logically false
contrapositive a new statement that combines the converse and inverse of an original logical statement converse the reversal of two propositions in a logical statement
coordinates pairs of numbers which are used to uniquely locate a point on a graph
correlation the degree of association between two variables (can be positive or negative)
cosine a trigonometric ratio (usually abbreviated to 'cos'); $\frac{\text { adjacent }}{\text { hypotenuse }}$
covariance a measure of the connection between two variables
cube a solid in which the six faces are all squares cuboid a solid in which the six faces are all rectangles cumulative frequency the total frequency up to a certain data value cylinder a solid prism with straight, parallel sides and a circular base

D
decimal places (d.p.) the number of digits after the decimal point
decreasing function the section of the function where the gradient is always negative
deflation a progressive decrease in consumer prices degrees of freedom in the chi-squared test, the number of pieces of independent data
denominator the bottom part of a fraction depreciation a decrease in value due to age or other factors
derived unit a unit defined in terms of another unit difference the result of subtracting a smaller number from a larger number
differentiation the process of finding the gradient function for any given function
discrete data data that can be counted
disjunction a compound statement where two propositions are connected by 'or'
dispersion the spread in a set of values
displacement the amount of movement of an object measured in a particular direction
domain the set of inputs into a function

E

empty (null) set a set containing no elements equilateral triangle a triangle in which all sides are the same length
equivalence a compound statement where two propositions are connected by 'if and only if'. Do not confuse this with logical equivalence
estimate to make a preliminary approximation event in probability, an individual outcome or combination of outcomes being investigated, such as a particular result of rolling a die or choosing an object from a bag
exchange rate the relationship between the values of two different currencies
exclusive disjunction a compound statement where two propositions are connected by 'or ... , but not both'
exponent small number to the upper right of a number/letter (also called index or power)
exponential function a function of the form $y=k a^{n}$ exponential growth growth in the form $y=a^{n}$

F

factorise to resolve an expression into a product of two or more factors, e.g. $12=2 \times 6 ; 15 x+12 y=3(5 x+4 y)$
frequency table a table that records the number of occurrences of an item or group of data
function the one-to-one, or many-to-one, relationship between two variables
future value a quantity used in financial calculations: the value of an investment after a certain number of years

G

general form the most commonly written form of a formula
geometric sequence a sequence created by multiplying by the same value each time
geometric series the sum of terms in a geometric sequence
gradient the measure of the steepness of a slope grouped data statistical data that has been put into groups, not listed individually

H

hemisphere half of a sphere
histogram a diagram with the appearance of a bar chart in which the area of each bar (not the height) represents the frequency of the group of data hypotenuse the side opposite the right angle in a right-angled triangle

I

implication where two logical statements are connected by the words 'if... then'
improper fraction a fraction in which the numerator is greater than the denominator
included angle angle between two given sides increasing function the section of the function where the gradient is always positive
index (indices) small number to the upper right of a number/letter
infinity the concept of having no end
inflation a general increase in prices, and the corresponding decrease in purchasing power, over time
integer a whole number, which may be positive, negative, or zero
intercept point at which a line or curve crosses an axis; may be specifically referred to as x-intercept or y-intercept
interest rate percentage charged by a financial institution on a borrowed sum
interquartile range the value obtained by subtracting the lower quartile from the upper quartile
intersection (geometry) the point where two lines cross
intersection (set theory) the overlap of two or more sets
interval the space between two numbers or between two boundaries
inverse an opposite operation, e.g. adding and subtracting are inverse operations
irrational number a real number that cannot be written as a fraction, e.g. $\pi, \sqrt{ } 2$
isosceles triangle a triangle with two sides of equal length

K

kelvin the SI unit of temperature; $0^{\circ} \mathrm{C}=273.16 \mathrm{~K}$

L

limit a value that is approached but not reached line of best fit a line on a graph which shows a general trend
line of symmetry a line that cuts a figure into two parts that are mirror images of each other
line segment a line which has fixed end points
linear equation an equation with two variables which gives a straight line when plotted on a graph
logical equivalence is when two compound statements mean the same thing; the compound statements will have exactly the same final column in their truth tables. (Also known as 'logically equivalent.) Do not confuse this with equivalence
lump sum in finance, money paid in a single payment, not in instalments

M

mapping a relationship between two sets of numbers maximum (pl. maxima) a stationary point where the gradient changes from positive to zero to negative mean the sum of data values divided by the number of data values, usually denoted by the Greek letter μ (population) or \bar{x} (sample)
measure of central tendency the mean, the median or the mode
median the middle number of a set of ordered data values
midpoint the halfway mark between two points minimum (pl. minima) a stationary point where the gradient changes from negative to zero to positive
mode (modal) the most frequently occurring value (group) in a set of statistical data
mutually exclusive describes events that cannot happen at the same time

N

natural number a number from the set of counting numbers: a whole number that is greater than or equal to zero
negation a statement of denial or contradiction, the assertion that a particular proposition is false normal a line at right angles to the tangent of a curve null hypothesis a statement asserting that there is no relationship between two variables
number line a line drawn to illustrate the order of real numbers
numerator the top part of a fraction

0

ogive a distribution curve where the frequencies are cumulative
optimisation using calculus to find the best solution to a problem
outcome the result(s) of a probability experiment, such as obtaining a tail from one throw of a coin
outlier a value that lies a long way outside the general range of data

P

parabola $a \cup$ or \cap-shaped curve demonstrating a quadratic equation
per annum for each year, e.g. 5\% interest per annum percentage error the difference between an estimated value and the exact value, calculated as a percentage relative to the exact value
perimeter the length of the outline of a closed figure
perpendicular at right angles to a line or plane
pie chart diagram in which data is arranged as sectors of a circle, the angles of the sectors representing the frequency of the data
polynomial a sum of two or more terms in the form $y=a+b x+c x^{2}+\ldots$
population the whole group that is being studied
power small number to the upper right of a number/
letter (also called exponent or index)
prime number a number that has exactly two different factors, itself and 1
prism a solid whose cross-sections parallel to an end are all identical
probability the chance that an event will occur proportion the relationship between two or more numbers, or between the parts of a whole
proposition a basic statement in logic; it can be true, false or indeterminate
present value a quantity used in financial calculations: the initial amount of an investment
\boldsymbol{p}-value a measure of evidence against the null hypothesis pyramid a solid with a polygonal base and an apex above the base. This is only correct for a right pyramid
Pythagoras' theorem the theorem for a right-angled triangle that links the length of the hypotenuse with the lengths of the other two sides
Pythagorean triples sets of three numbers that fit Pythagoras' theorem, e.g. 5, 12, 13

Q

quadratic equation an equation in which the highest exponent of the variable is 2 , i.e. it contains a square term: $a x^{2}+b x+c=0$
qualitative data data that is neither counted nor measured
quantitative data data that is counted or measured quartile the values that divide a set of data into four equal parts
quotient The 'whole-number' part of the result of dividing one number (or expression) by another

R

radius the distance from the centre of a circle to the circumference
random sample a sample of subjects that is randomly selected from a group
range (function) the set of output values of a function
range (statistics) the difference between the highest and lowest values of a set of data
ratio the relationship between two different numbers or quantities, e.g. 5: 6
rational number a number that may be expressed as a fraction, e.g. $\frac{a}{b}$
real number any number that can be placed on the number line
regression line used to analyse information on a scatter diagram
representative sample a statistical sample that fairly represents all the data collected
right cone/prism/pyramid a figure where the apex is directly above the centre of its base
right-angled triangle a triangle with one right angle (90°)
root of an equation the solution to a polynomial equation of any degree
rounding the approximation of a number to a given degree of accuracy

S

sample a subset of a larger group
sample space the complete set of possible outcomes from an experiment
sample space diagram a diagram listing every result of a probability experiment
scatter diagram a graph which uses paired data to analyse the correlation between two variables
scientific notation writing very large or very small numbers in standard form
sequence an ordered list of numbers (that follow a 'rule')
series sum of a sequence
set a group of numbers or objects with a common characteristic

SI unit the international system of units; there are seven base units of measurement
significant figures (s.f.) the number of digits used to specify how precisely a value is expressed
simple interest a system where interest calculations are based only the original amount deposited or borrowed
simultaneous equations a set of equations for which a common solution is sought
sine a trigonometric ratio (usually abbreviated to 'sin'); $\frac{\text { opposite }}{\text { hypotenuse }}$
skewed slanted to one side
slant height distance from the apex of a cone or pyramid to a point on the perimeter of its base solid three-dimensional figure
solution the answer to a problem; a value which, when substituted for the variable, makes the equation true sphere solid on which all points on the surface are equidistant from the centre (a ball)
standard deviation the measure of the amount by which a set of values differs from the arithmetical mean
standard form a method of writing very large or very small numbers in a compact form, e.g. 25000000 in standard form is 2.5×10^{7} (also called scientific notation)
statement a proposition in logic
stationary point a point on a curve where the gradient of the curve is zero
subset a set contained within a larger set

T

tangent (graph) a line which touches (but does not cross) a curve
tangent (trigonometry) a trigonometric ratio (usually abbreviated to 'tan'); $\frac{\text { opposite }}{\text { adjacent }}$
tautology a compound statement that is always true term a number in a sequence, or an element of an algebraic expression that is separated from other elements by a + or - sign
tree diagram a branched diagram used to illustrate probabilities
trend line a line on a graph which shows a general trend
trial and improvement improving accuracy through repeated calculations
trigonometric ratio the ratio of two sides in any right-angled triangle
trigonometry In triangles, the study of angles and lines and their relationships
truth table a table for the study of logic that lists all possible combinations of True and False turning point a point where a curve changes direction

\mathbf{U}

union contains all elements of two or more sets without repeats
universal set the set that includes all the elements that are under consideration
unknown a value represented by a letter

V

variable a quantity that can change variance the square of the standard deviation velocity the rate of change of the displacement (distance) of an object as it moves in a particular direction
Venn diagram a diagram that uses circles to demonstrate the relationships between sets
acceleration 31, 592
al-Khwarizmi 38
algebra 38
algorithms 1, 38
alternative hypothesis 395
amortisation 126
ampere 27
Analytical Engine 2
angle of depression 440-442
angle of elevation 440-442
antecedent statements 265
anticlockwise 460
approximation 8-9
Arabic notation 6
Archimedes 573
Aristotle 256
arithmetic sequences/progressions 65-68
GDC support 658-660
nth term 69-71
practical applications 76-79
use of general formula 72-76
arithmetic series 79-85
practical applications 86-89
asymptote, hyperbola 505-508
averages 182, 184
choosing appropriate calculation 196-199
axis of symmetry see line of symmetry
Babbage, Charles 2
bar charts 145-146
see also frequency histograms
bell-shaped distribution see normal distribution
biased samples 143-144
BIDMAS order of operations 1, 40
bimodal data sets 197
bivariate data 364
GDC support 672-673
black swan events 333
boundaries (grouped data) 149-151
see also mid-interval values
box and whisker diagrams 169-175
GDC support 665-666
Buckminsterfullerene 37
calculation triangles 469
calculus 571
optimisation using 628-632
candela 27
Cantor, Georg 5, 233
capital (finance) 116
Cardano, Girolamo 288
Cartesian plane 411
Celsius 29
central tendency measures 182-184
choosing appropriate calculation 196-199
GDC support 666-668
see also mean; median; mode
chi-squared statistic
calculation 389-390
using GDC 398-401
critical value 390-391
definition 388
degrees of freedom 390, 393-394
GDC support 675-677
p-value 391-392
restrictions on use 403-404
significance level 397
test for independence 395-396
clockwise 460
coefficient of determination 372
coin tossing, as god driven 288
combined events 291-292
probabilities 307-308
common difference 68
complements 237, 289-290
compound interest 116-122
GDC 122-129
compound statements 259-263
conditional probability 318-327
cone 468
surface area 481
volume 481
conjunctions (logic) 260-261
consequent statements 265
contingency tables 292-293
see also two-way contingency tables
continuous data 142
grouping 149-152
continuous random variables 335
contradiction see logical contradiction
contrapositive statements 280-281
converse statements 279
conversion between units 32-34
coordinates (Cartesian) 411
correlation
causation and 367
concept 364
GDC support 674-675
cosine 436
cosine rule 450-452
covariance 373
cube 467-468
cuboid 468
surface area 481
triangles within 469
volume 481
cumulative frequency 160
cumulative frequency curves 162-168
cumulative frequency graph, to find interquartile range 209
cumulative frequency tables 160-162
currencies
buying and selling 113-115
exchange rates 111-113
notation 110-111
cylinder 468
surface area 481
volume 481
data, types of 141-142
decimal form 26
decimal places 12-13
currencies 111
degree of a polynomial 558
degree of accuracy 9
degrees of freedom, chi-squared 390, 393-394
DeMorgan's Laws 270
denominator 4
dependent variables (bivariate data) 364
dependent variables (functions) 494
depreciation 132-135
depression, angle of 440-442
derivatives 573-574
GDC support 686-687
derived units, SI system 31-32
Descartes, René 46, 411, 423
differential calculus
history 572-573
notation 577
using GDCs 597-600
see also differentiation
differentiation 577-581
from first principles 581-582
of constants 584
of a rational function 585-588
of a straight line 584-585
see also rate of change
discrete data 142, 145-146
GDC support 663
grouping 147-149
disjunctions (logic) 261-262
dispersion measures 206
displacement 592
dodecahedron 467
domains (functions) 493
graphs of 498-500
drawings 509
e 555
E notation 25
Elements (Euclid) 410
elevation, angle of 440-442
elimination, solving pairs of linear equations 47-48
empty set 235,236
equivalence 266-267
testing using truth tables 270-271
see also logical equivalence
estimation 17-19
see also mid-interval values; percentage errors
Euclid 410
exchange rates 111-113
exclusive disjunctions (logic) 262
expected value 302-303
experimental probability 302
exponent 24
exponential functions 545-551
evaluating 549-550
GDC support 683-685
general form 546
graphs 545-548
horizontal asymptote 548
exponential growth 545-546
see also compound interest
exponential models 552-558
extrapolation 380
factorisation 58
Fahrenheit 29
five-figure summaries 169
foreign-exchange rates 111-113
frequency histograms 155-160
GDC support 664-665
frequency tables 145
functions 493-496
decreasing 613-614, 689-690
graphing 498-504
increasing 613-614, 689-690
notation 496-497
stationary points 614, 617-623
using second derivative to classify 625-626
turning points 614
see also exponential functions; gradient functions; polynomial functions; quadratic functions; rational functions
FX rates 111-113

Galileo Galilei 536
Galton, Francis 214
Gauss, Carl Friedrich 88
Gautama, Medhatithi 256
general forms, linear equations 38
general normal distribution 343-344
see also inverse general normal distribution
geometric sequences 90-92
finding position of a term 95-98
GDC support 661
nth term 92-95
geometric series 98-102
practical applications 103-105
gradient
finding x - and y-coordinates from 594-596
of a curve 573-577, 594
parallel lines 413
gradient functions 577
graphical display calculators (GDC)
Ans/ANS key 444, 483-484, 643
apps to download for IB examinations 122, 640
arithmetic sequences
finding sum 659-660
finding the number of terms 658-659
box and whisker diagrams 665-666
Chi-squared hypothesis testing 675-677
choice of 640
decreasing functions 689-690
degree mode, setting to 641
derivatives 686-687
differential calculus 597-600
exponential functions 683-685
financial app, TVM 661-662
fractions, entering 644
geometric sequences, finding sum 661
graphs
accessing the table of coordinates once plotted 678
drawing 645-646
horizontal asymptotes 680
range for a given domain 678-679
setting a window 646-647
trace function 648
vertical asymptotes 679
windows set by the manufacturer 647
zooming in 648
histograms 664-665
increasing functions 689-690
inverse normal calculations 671-672
linear equations 652-653
simultaneous pairs of 653-655
lists of data, entering 663
matrix of data
entering 675-676
viewing 677
maxima 691
memory use 643-644
minima 690-691
negative ((-)) key 645
normal at a point 688
normal distribution 669-671
parabolas 680-681
polynomial equations 685
product moment correlation coefficient 674-675
quadratic equations 656-657, 681-682
requirements 640
restrictions 640
rounding 649-650
scatter diagram of bivariate data 672-673
second functions of a key 642
solving equations using graphs 513-517, 652, 653-654, 656
standard form answers 650
stationary points and 620-623
statistics menu 682-683
subtract (-) key 645
tangent at a point 687-688
third functions of a key 642
time conversions 651-652
TVM financial app 661-662
using estimates to validate answers 9
graphs, sketching 508-513
grouped data
discrete data 147-149
GDC support 667-668
mean for continuous data 190-192
mean for discrete data 189-190
range for 209-210
Hardy, G. H. 7
hemisphere 468
surface area 481
volume 481
histograms see frequency histograms
horizontal asymptote exponential functions 548
GDC support 680 hyperbola 505
How to Solve It (Pólya) 492
hyperbola, graph of 504-508
hypotenuse 435
icosahedron 467
implication 265-266
improper fractions 4
included angle 454
independent events, probabilities 308-310
independent variables (bivariate data) 364
independent variables (functions) 493
index 24
infinity 3
inflation 129-132
inflexion, points of 617-620
instantaneous rate of change 591
integers 3
interest see compound interest; simple interest
internal assessment project
assessment criteria
Criterion A Introduction 694
Criterion B Information and/or measurements 694-695
Criterion C Mathematical processes 695
Criterion D Interpretation of results 696
Criterion E Validity 696
Criterion F Structure and communication 696-697, 697
marking scheme 694
finishing 697
reason for inclusion in course 692
starting 692-693
structure 693
topic choice 693
interquartile range (IQR) 207
making comparisons using 220-223
intersection 234, 237
inverse general normal distribution 353-355
GDC support 671-672
inverse standard normal distribution 351-353
inverse statements 279-280
irrational numbers 4-5
Islamic banking 116

Jevons, William 256
kelvin 27, 29
Kepler, Johannes 573
al-Khwarizmi 38
kilogram 27
Laplace, Pierre Simon 335
large numbers, standard form 22-23
left tail calculations 350-351
Leibniz, Gottfried 572, 589
Leibniz notation 577
limits 582
line of best fit 369-370
line of symmetry 529
equation in quadratic functions 529-530
linear equations 38-45
GDC support 652-653
pairs of 46-51
GDC support 653-655
linear models 521-527
logical contradiction 277
logical equivalence 275-276
logical tautology 276-277
Lovelace, Ada 2
lower quartile 162
graphical display calculators 210, 666-668

Madhava of Sangamagrama 573
mappings 493
marginal cost 590
mathematical modelling 492, 521
see also exponential models; linear models; polynomial models; quadratic models
maxima 617-618
GDC support 691
mean 182-183
compared to median and mode 196-199
for data in frequency tables 187-188
for grouped continuous data 190-192
for grouped discrete data 189-190
for simple data 186-187
GDC support 666-668
normal distribution 335
notation 185-186
mean point 369
median 162, 182-185, 196-199
GDC support 666-668
normal distribution 335
metre 27
mid-interval values 152-154
minima 617-618
GDC support 690-691
modal class 196
mode 182-183, 196, 196-199
normal distribution 335
modelling cycle 492
mole 27
mutually exclusive events, probabilities 305-307, 309-310
natural numbers 2-3
negative indices 24
negative powers 24
Newton, Isaac 572, 589
Newton's notation 577
Nightingale, Florence 140
Nixon, Richard 592
normal, finding equation of 605-608, 688
normal cumulative distribution 340
normal distribution
curve 334-336
GDC support 669-671
inverse calculations 350-351
mean and shape 336
practical applications 345-348
probability calculations 339-340
standard deviation and percentages 338-339
standard deviation and shape 336-337
symmetry 337-339
transforming normal to standardised normal 357-360
see also general normal distribution; standard normal distribution
North, angles from 460
null hypothesis 395
number lines 3
numbers 2-8
numerator 4
octahedron 467
ogives see cumulative frequency curves
optimisation 626-628
using calculus 628-632
order of an equation 39
parabolas 53-54
GDC support 680-681
vertices of 530-532
parallel lines, gradient 413
Pearson, Karl 372, 388

Pearson's product moment correlation coefficient
(PMCC) 371
GDC calculation 371-372
hand calculation 373-375
spreadsheet calculation 372-373
percentage errors 20-21
percentiles 181
perpendicular lines 413
pi 5
piano, logic 256
pie charts 145-146
to display frequencies 293
place order structure of numbers 11
Plato 467
Platonic solids 467
Pólya, George 492, 521
polynomial functions 558-562
GDC support 685
polynomial models 562-564
populations 142
power 24
prime numbers, square roots as irrational 5
prisms 468
triangles within 469
probability
and replacement 318-322
calculating 294-299
combined events 307-308
definition 288-290
GDC support 668
independent events 308-310
mutually exclusive events 305-307, 309-310
using tree diagrams 312-316
using Venn diagrams 316-318
see also conditional probability; experimental probability; theoretical probability
project see internal assessment project
propositions 256
definition 257-258
negation 259, 260
symbolic notation 258-259
see also compound statements; equivalence; implication
Punnett squares 294
pyramids 468
triangles within 469
Pythagoras of Samos 409
Pythagoras' theorem 437
earliest knowledge of 409
Pythagorean triples, on Babylonian clay tablets 409
quadratic equations 53-61, 528
GDC support 656-657, 681-682
quadratic functions 528-529
equation of line of symmetry 529-530
intercepts on the x and y axes 533-534
see also vertices, of parabolas
quadratic models 536-541
qualitative data 141
quantitative data 142
quartiles see interquartile range; lower quartile; upper quartile
Quetelet, Adolph 183
quotients 4
radians, not used in this course 436
Ramanujan, Srinivasa 7
random samples 142-144
random variables 335
range 207
for grouped data 209-210
for simple data 207-208
range (functions) 493
GDC support 678-679
graphs of 498
rate of change 589-592
see also second derivatives
rational functions 504-508
rational numbers 4
real numbers 5
regression line 376
GDC calculation 376
hand calculation 377-378
using equation of 380-381
representative sample 142-144
right-angled triangles
drawing extra lines to obtain 443-445
names of sides 435
right prism 468
surface area 481
volume 481
right pyramid 468
surface area 481
volume 481
right solids 468
right tail calculations 350-351
Rossi, Hugo 592
rounding 9-17
GDC support 649-650
see also percentage errors
Russell, Bertrand 256
sample space diagrams 290-292
sample spaces 290
samples 142-144
scatter diagrams 365-369
GDC support 672-673
scientific notation see standard form
second derivatives 592-593
using to classify stationary points 625-626
sequences 65
see also arithmetic sequences/progressions; geometric sequences
set theory
applications 239-241
basic concepts 234-236
history 233
notation 237
sets 3
SI units (Système International d'Unités) 27-31
significance level, chi-squared 390
significant figures 13-15
simple interest 116
simultaneous equations see linear equations, pairs of sine 436
sine rule 446-450
Singh, Simon 592
sketches 509
sketching graphs 508-513
skewed data 192
small numbers, standard form 23-24
smoking
and cancer 333
and college grades 364
SOHCAHTOA 436
solids
finding angles within 474-480
finding lengths of lines within 469-474
surface areas 480-487
volumes 480-487
see also Platonic solids; right solids
sphere 468
surface area 481
volume 481
standard deviation 214
for data in a frequency table 217-218
for simple data 214-216
making comparisons using 220-223
standard form 22-26
GDC support 650
standard normal distribution 341-342 see also inverse standard normal distribution
statements (logic) 256
stationary points 614, 617-623
using second derivative to classify 625-626
statistics, definition 333
straight lines
definitions 410
drawing graph
from general equation 427-430
from gradient-intercept equation 425-427
equation
finding 417-418
general form 421-423
gradient-intercept form 420
gradient 411-416
y-intercept 416
subsets 235
substitution, solving pairs of linear equations 48
tables of outcomes 292-293
Taleb, Nassim Nicholas 333
tangent 436
finding equation of 600-603, 687-688
tautology see logical tautology
temperature 29-30
terms 40
tetrahedron 467
theoretical probability 302
time 28-29
GDC support 650
tree diagrams 292
to calculate probability 312-316
triangles
calculating area without knowing height 454-456
see also right-angled triangles; trigonometry
triangular prism 468
trigonometry 435
constructing labelled diagrams 457-461
see also triangles
truth tables 256, 261, 268-269
for three propositions 272-275
for two propositions 269-272
turning points 614
TVM program 122
GDC support 661-662
two-way contingency tables 292-293, 393-394
union 234, 237
universal set, Venn diagrams 234
upper quartile 162
graphical display calculators $210,666-668$
velocity 592
Venn diagrams 5
applications 239-241, 261
history 233
mutually exclusive events 305
notation 234-236
numbers and 236-239
to calculate probability 316-318
to display frequencies 293
with three sets 242-247
Venn, John 233, 256
vertical asymptote
GDC support 679
hyperbola 506
vertices 529
of parabolas 530-532
weather balloon example 380-381
Whitehead, A.N. 256

Yates continuity correction 404
z-score 358
zero, as natural number 3

