

Equation of a line in two dimensions

Euclid (~ 300 BCE) was a Greek mathematician who worked in Alexandria in Egypt. Whilst leading the mathematical school in Athens, he wrote a textbook in 13 parts called The Elements in which he collected together all the mathematics known at that time. Euclid's reputation is founded on the way he collated, and improved, theorems and ideas that were current then, which was mainly geometry. The Elements was the standard textbook for mathematicians until about 150 years ago. Euclid can be described as the most important mathematics teacher of all time.

The Elements begins with definitions and five postulates, or axioms. The first postulate states that it is possible to draw a straight line between any two points. This may seem obvious to you as you have drawn lines on pieces of paper since you were young. But consider that any straight line is constructed from an infinite number of points on that line and to draw a straight line on a flat piece of paper, you only need two pieces of information. With those two pieces of information you can draw a line that is unique.

You need:

- either a point on the line and its direction or gradient,
- or two points on the line.

This was groundbreaking at the time but is something that we take for granted today, and students often question why we need to learn it. There is a story about someone who had begun to learn geometry with Euclid who wondered a similar thing. After he had learned the first theorem, the student asked Euclid, 'What shall I get by learning these things?' Euclid responded by asking his slave to, 'Give him three pence since he must make gain out of what he learns.'

14.1 The gradient of a line

The gradient of a line describes the 'steepness' or slope of that line. A very steep line has a large gradient, while a shallow slope has a small gradient.

$$
\text { The gradient is defined as: } m=\frac{\text { change in vertical distance }}{\text { change in horizontal distance }}
$$

\boldsymbol{m} is the letter that represents the gradient of a line in the general linear equation $y=m x+c$.

The vertical change from A to B is +2 .
The horizontal change from A to B is +5 .
$m=\frac{2}{5}$

The vertical change from A to B is -4 .
The horizontal change from A to B is +2 .
$m=\frac{-4}{2}=-2$
A line that 'slopes downwards' has a negative gradient.

Calculating the gradient from the coordinates of the points on the line

If a line is plotted on a graph, the gradient can be calculated using the coordinates of points on that line. Be careful though and look at the scale of the graph, both horizontally and vertically. In the graph below, two units on the horizontal axis is the same as two units on the vertical axis, but this might not always be the case.

AC is 2 units long,
$B C$ is 4 units long.
$m_{\mathrm{AB}}=\frac{4}{2}=2$
DF is 1 unit long,
EF is 4 units long.
$m_{\mathrm{ED}}=\frac{-1}{4}=-\frac{1}{4}$
Note that the line DE slopes downwards so it has a negative gradient. F is -1 along the y-axis from D .

hint

A Cartesian plane (below) is a system of two axes on a flat expanse. It is named after René Descartes, who originated it.

The suffixes to x and y must be in the same order. This will ensure that the gradient has the correct sign.

The calculations of gradients can be important in civil engineering. The transCanada highway is engineered so that gradients in the road (any inclines or declines) are kept at about 6\%. This helps to regulate traffic speed and flow.

Using the general coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the vertical distance from A to B in the graph below is $y_{2}-y_{1}$ and the horizontal distance from A to B is $x_{2}-x_{1}$.

The gradient can be calculated as:

$$
m=\frac{\text { change in vertical distance }}{\text { change in horizontal distance }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Therefore, if you are given the coordinates of two points on a line, you can calculate its gradient in one of two ways:

1. Draw a graph, plot the points and calculate the vertical and horizontal changes.
2. Use the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Worked example
continued...

Substitute the coordinates into

 the formula for the gradient: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.Notice that FG 'slopes backwards' so this gradient is negative.

When trying to divide by zero, your calculator may return the answer, 'Syntax ERROR' or 'Ma ERROR'.

The gradient of any horizontal line is zero.
(b) A line passes through the points $\mathrm{F}(-2,6)$ and $G(4,-2)$. Calculate the gradient of the line segment FG.
(c) C is the point $(3,4)$. Calculate the gradients of the lines $A C$ and $B C$.
(a) $m_{A B}=\frac{7-4}{(3-(-1))}=\frac{3}{4}$

$$
m=\frac{3}{4}
$$

(b) $m_{F G}=\frac{6-(-2)}{(-2)-4}=\frac{8}{-6}=-\frac{4}{3}$

$$
m=-\frac{4}{3}
$$

(c) $m_{A C}=\frac{7-4}{3-3}=\frac{3}{0}$.
$A C$ is a vertical line and so has an undefined gradient.

$$
m_{B C}=\frac{4-4}{3-(-1)}=\frac{0}{4}=0
$$

$B C$ is a horizontal line.

The next worked example shows how to calculate gradients of parallel lines and of lines that are perpendicular to each other.

	Worked example 14.2
Q.	(a) Plot the points $\mathrm{A}(1,1), \mathrm{B}(3,5), \mathrm{C}(2,4)$, $\mathrm{D}(8,1), \mathrm{E}(-4,-5)$ and $\mathrm{F}(-1,1)$ on a graph and join the points A to B, C to D and E to F. (b) Calculate the gradients of the line segments AB, CD and EF. (c) Which two lines are parallel? Look at their gradients and comment. (d) Which two lines are perpendicular?
14 Equation of a line in two dimensions	

Gradient summary

- Horizontal lines have a gradient of 0 .
- Vertical lines have a gradient that is undefined.
- Parallel lines have the same gradient, $m_{1}=m_{2}$
- The gradients of two lines that are perpendicular multiply to give -1 : $m_{1} \times m_{2}=-1$.

Exercise 14.1

1. Plot the following sets of points and hence calculate the gradient of each of the lines joining the points.
(a) $(2,0)$ and $(0,2)$
(b) $(1,7)$ and $(3,15)$
(c) $(-2,3)$ and $(6,-8)$
(d) $(-4,-5)$ and $(0,7)$
(e) $(8,-9)$ and $(12,10)$
2. Plot the following points on a graph: $A(-1,2), B(1,3), C(5,0)$ and $D(1,-2)$. Join the points to form a quadrilateral $A B C D$.
(a) Calculate the gradients of the line segments $A B, B C, C D$ and $A D$.
(b) Which two of the line segments are parallel? Look at their gradients. Comment on the connection between their gradients.
(c) Name a pair of perpendicular line segments. Look at their gradients. Comment on the connection between their gradients.
3. (a) Draw the line segments AE, CD, CE, DE, DF and GF on a copy of this grid. Hence calculate the gradient of each of them.

(b) Which of the line segments from above are parallel? Comment on the relationship between their gradients.
(c) Which of the line segments from above are perpendicular? Comment on the relationship between their gradients.
4. (a) Calculate the gradients of each of the following line segments.

(b) Indicate, with reasons, which two of the line segments are:
(i) parallel
(ii) perpendicular.

14.2 The y-intercept

The point where a line crosses the y-axis is called the y-intercept. This is often denoted by the letter c.

A is the point $(0,5)$
B is the point $(0,-1)$
C is the point $(0,-3)$
If you are asked to give the coordinates of the y-intercept, the x-coordinate will always be 0 .

14.3 Finding the equation of a straight line

The equation of a straight line describes the condition (or rule) that links the x - and y-coordinates to create that line. For some lines it is simple to look at the diagram or the coordinates and note the link.

If the points $(5,4),(4,3)$ and $(2,1)$ are plotted on a graph, they form a line. What is the rule that connects the x - and y-coordinates?

(x, y)	\boldsymbol{x}	\boldsymbol{y} in terms of \boldsymbol{x}
$(2,1)$	2	$2-1=1$
$(4,3)$	4	$4-1=3$
$(5,4)$	5	$5-1=4$

The y-coordinate is always one less than the x-coordinate.

The equation of the line is $y=x-1$.
Look at the gradient and y-intercept on the graph.

The gradient $=1$.
The y-intercept is $(0,-1)$.

The points $(2,0),(2,5)$ and $(2,-3)$ are plotted on a graph. Find the rule that connects them.

x	y
2	-3
2	0
2	5

The x-coordinate is always 2 ; only the y-coordinate changes.

The equation of the line is $x=2$.
The graph shows that the line is vertical.
The gradient of the line is ∞.
The graph does not cross the y-axis, so there is no y-intercept.

Exercise 14.2

1. Plot the following sets of points on a graph. Determine the rule connecting the x - and y-coordinates of the points and hence find the equation of the line passing through the points.
(a) $(-1,-2),(0,0),(2,4)$
(b) $(-1,-1),(0,1),(1,3)$
(c) $(1,2),(2,5),(3,8)$
(d) $(2,3),(3,7),(4,11)$
(e) $(1,-3),(2,-6),(3,-9)$
(f) $(1,-2),(2,-5),(3,-8)$
(g) $(-2,6),(0,4),(4,0)$
2. By selecting two or three suitable points on the line, determine the equation of each of the following straight lines in the graphs (a) to (e). The lines are coloured red.
(a)

(b)

(c)

(d)

(e)

3. Find the equations of line A , line B and line C .

14.4 The equation of a straight line

The general equation of a straight line can be given in different forms. In this course you should be able to recognise:

$$
\begin{array}{ll}
y=m x+c & \text { the 'gradient-intercept' form } \\
a x+b y+d=0 & \text { the 'general' form. }
\end{array}
$$

The 'gradient-intercept' form: $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$

hint

If the equation is $y=m x-c$ then
' $-c$ ' represents the y-intercept.
If the equation is in this form ' m ' represents the gradient and ' $+c$ ' represents the y-intercept.

Depending on the information that you are given, you can find the equation of a particular line, as shown in the examples below.

| Q.Worked example 14.4
 A.
 The gradient of a line is $\frac{4}{3}$ and the line crosses the y-axis
 at $(0,-2)$. Find the equation of the line. |
| :--- | :--- |
| If the gradient is $\frac{4}{3}$ then $m=\frac{4}{3}$
 If the line crosses the y-axis at $(0,-2)$ then the
 y-intercept is -2.
 So, the equation of the line is $y=\frac{4}{3} x-2$. |

In this case, the intercept has not been given and must be calculated by substituting known values into $y=m x+c$ and solving the equation for c.

Replace y by the value of the y-coordinate of the point, x by the value of the x-coordinate and m by the value of the gradient.

Worked example 14.5
The gradient of a line is -3 , and the line passes through the point $(2,5)$. Find the equation of the line.

The line is passing through two points but the gradient and the y-intercept have not been given, so we need to calculate them.

Once the gradient has been calculated, you can substitute known values into $y=m x+c$ to solve for c. Choose either A or B as the point. The result will be the same whichever point you use.

The 'general' form: $a x+b y+d=0$

The general form of a linear equation is $a x+b y+d=0$, where a, b and d are integers.

The general form can be useful because you can use it to write an equation without rational numbers (fractions). If you are given the
gradient-intercept form of an equation and it contains fractions, you can rearrange it into the general form to remove the fractions and make it easier to work with. You can also rearrange the general form into the gradient-intercept form.

You were reminded how to rearrange equations in Learning links 2A in Chapter 2.

Add $2 x$ to both sides of the equation.

A.
(a) $y=-2 x-1$
$y+2 x=-1$

$$
y+2 x+1=0
$$

(b) $\frac{1}{2} y=4 x-3$

$$
y=8 x-6
$$

$y-8 x+6=0$
(c) $\frac{y}{3}=-\frac{x}{2}+2$

$$
2 y=-3 x+12
$$

$$
3 x+2 y-12=0
$$

Add $3 x$ and subtract 12 from both sides of the equation.

	Worked example 14.7
Q.	Rearrange the following equations into the form $a x+b y+d=0$. (a) $y=-2 x-1$ (b) $\frac{1}{2} y=4 x-3$ (c) $\frac{y}{3}=-\frac{x}{2}+2$
A.	$\text { (a) } \begin{aligned} y & =-2 x-1 \\ y & +2 x=-1 \end{aligned}$
	$y+2 x+1=0$
	$\text { (b) } \begin{aligned} & \frac{1}{2} y=4 x-3 \\ & y=8 x-6 \end{aligned}$
	$y-8 x+6=0$ (c) $\frac{y}{3}=-\frac{x}{2}+2$
	$2 y=-3 x+12$ $3 x+2 y-12=0$

	Worked example 14.8
Q.	A straight line passes through the points $\mathrm{A}(3,4)$ and $\mathrm{B}(5,10)$. (a) Find the gradient of the line segment AB. (b) Find the equation of the line AB. Give your answer in the form $y=m x+c$.

continued...

Calculate the gradient using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Use one of the points to substitute values into the gradient-intercept equation; solve the equation for c.

If the lines are parallel, you know that $m=3$ and you can substitute this value and the coordinates of point C into $y=m x+c$ to solve for c.

$$
\begin{aligned}
& m_{1} \times m_{2}=-1 \\
& 3 \times-\frac{1}{3}=-1
\end{aligned}
$$

Substitute the coordinates of point D into $y=m x+c$ to solve for c.

Rearrange $y=m x+c$ into the general form $a x+b y+d=0$. Multiply each term by 3 to remove the fraction.
(c) Find the equation of the line parallel to AB that passes through the point $C(-2,1)$.
(d) Find the equation of the line perpendicular to $A B$ that passes through the point $\mathrm{D}(0,-1)$. Give your answer in the form $a x+b y+d=0$.
(a) $m_{A B}=\frac{4-10}{3-5}=\frac{-6}{-2}=3$
(b) Using $A(3,4)$

$$
\begin{aligned}
& y=m x+c \\
& 4=3 \times 3+c \\
& 4-9=c \\
& -5=c
\end{aligned}
$$

Equation of $A B$ is $y=3 x-5$
(c) If lines are parallel, then $m=3$ for both lines

\quad Using $C(-2,1) \quad$| 1 | $=3 \times-2+c$ |
| ---: | :--- |
| 1 | $=-6+c$ |
| 7 | $=c$ |

Equation of line through C is $y=3 x+7$
(d) If $m=3$, the gradient of the perpendicular line $=-\frac{1}{3}$

Using $D(0,-1)$

$$
\begin{aligned}
& -1=-\frac{1}{3} \times 0+c \\
& -1=c
\end{aligned}
$$

Equation of line through D is
$y=-\frac{1}{3} x-1$
$3 y=-x-3$
$x+3 y+3=0$

Exercise 14.3

1. Find the equation of the straight line through the given point with the given gradient.
(a) $(3,7) ; 6$
(b) $(0,8) ; 4$
(c) $(-2,4) ;-5$

Descartes
demonstrated that geometric problems could be described in terms of algebra, and algebra problems in terms of geometry. Does this tell you that some problems can be seen from two entirely different viewpoints?
(d) $(1,0) ;-3$
(e) $\left(\frac{3}{4},-3\right) ; 2$
(f) $\left(-5, \frac{3}{4}\right) ; \frac{5}{7}$
2. Find the equation of the straight line passing through the following pairs of points.
(a) $(0,4)$ and $(-2,8)$
(b) $(-3,5)$ and $(7,3)$
(c) $(2,-1)$ and $(9,0)$
(d) $\left(7, \frac{1}{3}\right)$ and $\left(11, \frac{5}{6}\right)$
(e) $(-6,-3)$ and $(-1,4)$
(f) $\left(\frac{1}{2}, \frac{3}{4}\right)$ and $(0,-1)$
3. The points A and B have coordinates $(2,5)$ and $(4,9)$ respectively. A straight line l_{1} passes through A and B.
(a) Find the equation of line l_{1} in the form $a x+b y+d=0$.

The line l_{2} passes through the point $(3,-5)$ and has gradient $\frac{2}{7}$.
(b) Find the equation of l_{2}
4. Find the equation of the line that is:
(a) parallel to the line $y=7 x-1$ and passes through the point $(2,-9)$
(b) passes through the point $(-4,7)$ and is parallel to the line $5 x+2 y=3$
(c) passes through $\left(3, \frac{1}{5}\right)$ and is parallel to the line $11-3 x-2 y=0$
(d) parallel to the line $5 x=9-8 y$ and passes through the origin.
5. Find the equation of the line passing through the point:
(a) $(6,-1)$ and perpendicular to the line $y=3 x$
(b) $(11,15)$ and perpendicular to the line $7 x=2 y$
(c) $(0,9)$ and perpendicular to the line $4 x-3 y=13$
(d) $\left(-\frac{1}{5}, 0\right)$ and perpendicular to the line $3 x+2 y-12=0$.
6. (a) Find the gradient of the line joining the points $\mathrm{A}(-1,2)$ and $\mathrm{B}(3,4)$.
(b) Hence find the equation of the line AB in the form $y=m x+c$.
(c) Find the equation of the line CD , perpendicular to AB and passing through point $\mathrm{C}(5,9)$.
7. Find the equation of each of the following lines in the form

$$
y=m x+c .
$$

(a)

(b)

(c)

(d)

8. (a) Find the gradient of the line joining the points $\mathrm{A}(1,-2)$ and $B(3,-4)$.
(b) Hence find the equation of the line joining the points A and B in the form $y=m x+c$.
(c) Rearrange the equation of the line to the form $a x+b y+d=0$, where a, b and d are integers.

14.5 Drawing a straight line graph from an equation

The equation of a line gives the unique rule that allows you to draw that line, and that line only.

Using $y=m x+c$
There are three methods for drawing a straight line graph using $y=m x+c$. You can:

1. Use the values of m and c.
2. Calculate a table of values using the equation and plot them.
3. Use your GDC.

To draw the line with equation $y=-\frac{\mathbf{1}}{\mathbf{2}} x+3$

Method 1:

$m=-\frac{1}{2}, c=3$, so the line passes through the point $(0,3)$ with a gradient of $-\frac{1}{2}$.

Method 2:

Draw up a table of values and then plot the points. It is helpful to calculate at least three points, as this will confirm that you have a straight line.

x	-2	0	4
$-\frac{1}{2} x+3=y$	$-\frac{1}{2}(-2)+3=4$	$-\frac{1}{2} \times 0+3=3$	$-\frac{1}{2} \times 4+3=1$

Plot the points $(-2,4),(0,3)$ and $(4,1)$.

Method 3:
Using your GDC (see '22.2.G Graphs' on page 645 and '14.1 Accessing the table of coordinates from a plotted graph' on page 678 of the GDC chapter for a reminder if you need to):

i. Enter the equation.

ii. Draw the line.

iii. Use the table to check the coordinates of your points.

Using $a x+b y+d=0$
There are three methods for drawing a straight line graph using
$a x+b y+d=0$. You can:

1. Use the equation to find the intercepts on the x - and y-axes.
2. Rearrange the general equation into the gradient-intercept form and use the values of m and c.
3. Rearrange the general equation into the gradient-intercept form and use your GDC.

Method 1:

Find the intercepts on the x - and y-axes by calculating the points where $x=0$ and $y=0$ and drawing a line through those points.

$$
\begin{aligned}
\text { When } x=0,3 x & =0 & -4 y-12 & =0 \\
& \text { so } 3 x-4 y-12 & =0 \Rightarrow & -4 y \\
& =12 & & \\
& & y & =-3
\end{aligned} \quad \text { Plot }(0,-3)
$$

Method 2:

Rearrange into the gradient-intercept form with y as the subject of the equation, then use the values of m and c to draw the line.

If $y=\frac{3}{4} x-3$, draw the line with an intercept of $(0,-3)$ and gradient of $\frac{3}{4}$.

Method 3:

When using your GDC, you must use the equation in the form $y=m x+c$ so, from method 2 above, draw $y=\frac{3}{4} x-3$ on your GDC and transfer the line onto your graph paper, using the table function.

Exercise 14.4

1. Draw the lines of the equations given below.
(a) $y=2 x-3$
(b) $y=1.5 x+4$
(c) $y=6-x$
(d) $y=10-7 x$
(e) $2 y=8+5 x$
(f) $5 y=3 x-9$
2. Draw the following lines:
(a) $4 y=3 x-12$
(b) $x+y=7$
(c) $2 x+3 y=6$
(d) $6 y-7=5 x$
(e) $3 x+4 y-2=0$
(f) $4 x-y-3=0$
(g) $7 x+3 y-4=0$
3. (a) Draw the line with the equation $y=3 x+4$.
(b) Find the equation of the line parallel to $y=3 x+4$ that passes through the point $(2,7)$.
4. (a) Draw the line with the equation $y=4-5 x$.
(b) Find the equation of the line parallel to $y=4-5 x$ and passing through the point $(-1,2)$.
(c) Find the equation of the line passing through the point $(3,8)$ which is perpendicular to the line $y=4-5 x$.
5. Solve the following simultaneous equations. In each case use your GDC to draw the pair of straight lines and write down the point of intersection.
(a) $y=7 x-4$ and $y=4$
(b) $y=4 x-1$ and $y=-2 x+2$
(c) $y=6-5 x$ and $y=4 x-12$
(d) $3 y+x=1$ and $5 y=x+7$
(e) $x-2 y=2$ and $3 x-4 y=8$
(f) $\begin{aligned} & 2 x+3 y-7=0 \text { and } \\ & 15 x-7 y-9=0\end{aligned}$ $15 x-7 y-9=0$

Chapter 2 gives methods for solving pairs of linear equations. One of the methods described uses a graph, and the solution is found where the two lines intersect.

Summary

You should know:

- how to calculate the gradient and y-intercept of a line
- that the equation of a line in two dimensions can be given in two forms:
- the gradient-intercept form, $y=m x+c$
- the general form, $a x+b y+d=0$
- that parallel lines have the same gradient $\left(m_{1}=m_{2}\right)$ and two lines are perpendicular if the product of their gradients is $-1\left(m_{1} \times m_{2}=-1\right)$
- how to use information from a graph to create an equation of the line
- how to draw a graph using the equation of the line.

Mixed examination practice

Exam-style questions

1. Find the equation of the straight lines through the point $(-3,7)$ with the following gradients:
(a) 2
(b) -5
(c) $-\frac{3}{4}$ (Leave your answer to part (c) in the form $a x+b y+c=0$.)
2. The graph below shows four lines; A, B, C and D. Write down the equation of each of the lines in the form $y=m x+c$.

3. The points C and D have coordinates $(-1,-8)$ and $(1,2)$ respectively.
(a) Find the gradient of the line joining the points C and D .
(b) Hence find the equation of the line joining the points C and D in the form $y=m x+c$.
4. The line L_{1} has the equation $2 y+3 x=6$.
(a) Draw the graph of line $L_{1 .}$
(b) Find the equation of the line L_{2} which passes through the point $(-3,0)$ and is perpendicular to the line L_{1}.
(c) Determine the equation of line L_{3}, passing through the point $(4,-7)$ and parallel to L_{1}.
5. The line L_{1} has the equation $4 x+5 y-20=0$.
(a) Draw the graph of line L_{1}
(b) Write down the equation of any line which is:
(i) parallel to L_{1}
(ii) perpendicular to L_{1}.

A second line, L_{2}, has equation $20 y-15 x-18=0$.
(c) Draw the graph of line L_{2}.
(d) Find the point of intersection of the two lines.
(e) Hence state the solutions of the following pair of simultaneous equations:
$4 x+5 y-20=0$ and $20 y-15 x-18=0$.

Past paper questions

1. (a) Write down the gradient of the line $y=3 x+4$.
(b) Find the gradient of the line which is perpendicular to the line $y=3 x+4$.
(c) Find the equation of the line which is perpendicular to $y=3 x+4$ and which passes through the point $(6,7)$.
(d) Find the coordinates of the point of intersection of these two lines.
[May 2008, Paper 1, TZ2, Question 6] (© IB Organization 2008)
2. Three points are given $A(0,4), B(6,0)$ and $C(8,3)$.
(a) Calculate the gradient (slope) of line AB.
(b) Find the coordinates of the midpoint, M , of the line AC .
(c) Calculate the length of line AC.
(d) Find the equation of the line BM giving your answer in the form $a x+b y+d=0$ where a, b and $d \in \mathbb{Z}$.
(e) State whether the line $A B$ is perpendicular to the line $B C$ showing clearly your working and reasoning.
[Nov 2006, Paper 2, TZ0, Question 2] (© IB Organization 2006)

hint

In question 2, part (b), the midpoint M is halfway along the line AC.

Chapter 15 Trigonometry

Trigonometry is a practical application of mathematics that is used in fields as diverse as navigation, engineering, map-making and building.

In the most basic terms, a receiver of a global positioning system (GPS) dermines where it is on Earth by calculating the distance between at least three satellites in space and the receiver on the ground (artwork adapted from http://www.thegeeksclub.com/how-gps-works/).

Trigonometry uses the fact that, as long as the shape of a triangle does

In this chapter you will learn:

- how to use the sine, cosine and tangent ratios to find unknown sides and angles of right-angled triangles
- about angles of elevation and depression
- how to use the sine rule,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
- how to use the cosine rule, $a^{2}=b^{2}+c^{2}-2 b c \cos A$ and $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
- about an alternative formula for finding the area of a triangle, $A=\frac{1}{2} a b \sin C$
- the best way of sketching labelled diagrams from verbal statements. not change, the ratios of its sides remain the same.

In this diagram, triangles ADE and ABC are similar; the angle x° is the same for both. So, $\frac{a}{b}=\frac{d}{c}=\frac{e}{f}$.

In any right-angled triangle, the sides are given the same names:

The hypotenuse is always opposite the right angle (no matter how the triangle is oriented). It is the longest side.

The opposite side is opposite the given angle.
The adjacent side is beside the given angle.

exam
 15.1 Trigonometric ratios

There are three standard ratios that have values programmed into your GDC. Their full names are sine, cosine and tangent, but these are frequently shortened to sin, cos and tan, respectively. The short versions are printed on your calculator keys.

The ratios are defined as:

$$
\sin (\mathrm{e}) \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos (\text { ine }) \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan (\text { gent }) \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Make sure that you learn the trigonometric ratios - they are not given in the Formula booklet. $\mathrm{SOH}, \mathrm{CAH}, \mathrm{TOA}$ is a useful way to remember them; or you could make up your own reminder.

The uses of
trigonometry are wide-ranging and unexpected. Their use has been extended by the deeper understanding of sine and cosine curves. The concept of the rightangled triangle has been used in map-making and land surveying for centuries. The techniques of trigonometry now support such varied uses as: aviation, architecture, satellite systems and GPS, oceanography, digital imaging and the way that music is downloaded from the internet.

When you are using a trigonometric ratio, the most important step is choosing the correct one! Once you have identified the correct ratio to use:

- write down the formula for that ratio
- insert the values that you know
- complete your calculation.

If you are solving a problem that involves right-angled triangles, you can use trigonometry to find:

- the length of a side, given that you know the length of one other side and the size of an angle
- the size of an angle, given that you know the lengths of two sides.

For example, to find side x in the triangle ABC below first check the information:

Use CAH = cosine.

$$
\begin{aligned}
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \cos 52^{\circ}=\frac{x}{5.9} \\
& x=5.9 \times \cos 52^{\circ} \\
& x=3.63 \mathrm{~cm}
\end{aligned}
$$

If you know the lengths of two sides and need to know the length of the third side, use Pythagoras' theorem.

GDC

If you need a reminder of how to use the trigonometric keys on your

GDC, see section ' $22.2 B$ The second and third functions of a calculator key' on page 642 of the

GDC chapter.

> o - yes; a - no; h - yes;
so use sin ratio. Substitute in known values and solve for x.

To get the angle in degrees, you need to use inverse sin; this is the $\sin ^{-1}$ key on your GDC.

Pythagoras' theorem states that 'the square on the hypotenuse is equal to the sum of the squares on the other two sides.'

$$
c^{2}=a^{2}+b^{2}
$$

Worked example 15.1
For the given triangle, calculate:
(a) the size of angle x
(b) the length of the adjacent side.

(a) $\sin x=\frac{\text { opposite }}{\text { hypotenuse }}$
$\sin x=\frac{7}{9.4}=0.7447$
$x=48.1^{\circ}$
囲 TEXAS

(b) $A C^{2}=9.4^{2}-7^{2}$
$A C^{2}=39.36$
$A C=\sqrt{39.36}$
$A C=6.27 \mathrm{~cm}$

You know the lengths of

 two sides.Use Pythagoras' theorem to find the length of the third side.

First, sketch a diagram and label it with the information from the question. Then identify the ratio needed and solve the equation.

Worked example 15.2
In the triangle $\mathrm{XYZ}, \mathrm{YXZ}=32^{\circ}$ and $\mathrm{YZ}=3.9 \mathrm{~cm}$.
(a) Find the length of XZ , the hypotenuse.
(b) Calculate the length of XY .

Exercise 15.1

1. For each of the following triangles work out the length of the side labelled x.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(1)

2. Calculate the size of the shaded angle in each of the triangles below.
(a)

(b)

(c)

(d)

(e)

(f)

3. Triangle PQR is isosceles with $\mathrm{PQ}=\mathrm{PR}=35 \mathrm{~cm}$. Angle $\mathrm{QPR}=84^{\circ}$. Find the length of the perpendicular from P to $Q R$.
4. A ladder 6 metres long leans against a vertical wall. The ladder makes an angle of 54° with the wall. How far up the wall does the ladder reach?
5. A ladder 8 metres long is placed against a vertical wall. If the ladder reaches 6.3 metres up the wall, calculate the angle the ladder makes with the wall.
6. Germaine is flying a kite. She pins the end of the kite string to the ground so that the string is pulled straight as the wind pushes on the kite. If the length of the kite string is 7.8 metres and the kite has a vertical height of 5.9 metres above the ground, what angle does the string of the kite make with the horizontal ground?

If you draw a diagram for problems that use these terms, it will help you to identify the correct angle.

15.2 Angles of elevation and depression

If you lie on the ground so that the base of a tree is at eye level and look up, the angle that you look through is called the angle of elevation.

If you lie on the ground at a cliff top and look down at a boat on the water, the angle that you look through is called the angle of depression.

continued...

The angle of depression between two points = the angle of elevation between those points; from the diagram you can see that the angles are alternate angles, which means they are the same size.
o - yes; a - yes; h - no.
Use TOA.
Worked example 15.4
Q.

Alexis is lying down on top of a hill, looking at a garage in the village below. If the hill is 563 m high, and the village is 2.25 km away, calculate the angle of depression.

$\tan x=\frac{\text { opposite }}{\text { adjacent }}$

Make sure the units of distance are the same.
$\tan x=\frac{563}{2250}$
$x=14.0^{\circ}$
$x=$ angle of depression $=14.0^{\circ}$

Summary

This flow chart can help you to choose the correct trigonometric ratio for any given problem.

Exercise 15.2

1. From a point on a boat, the angle of elevation to the top of a vertical cliff is 32°. If the horizontal distance of the boat from the bottom of the cliff is 1650 metres, calculate the vertical height of the cliff.
2. A coastguard is standing on a cliff. From the top of the cliff he measures the angle of depression of an approaching fishing trawler to be 26°. The distance between the coastguard and the fishing trawler is 1750 metres.

Given that the coastguard is 1.89 metres tall, find the vertical height of the cliff above the trawler.
3. From a point A , the angle of elevation of the top, B , of a tall building is 24°. From another point C on the opposite side of the building, the angle of elevation of the top of the building is 15°. It is known that the distance between A and B is 175 m .

(a) Calculate the height of the building.
(b) Find the distance between the points A and C.

15.3 Harder trigonometry problems

In a practical problem, right-angled triangles can be difficult to identify. It may be necessary to draw in an extra line so that you can use rightangled trigonometry.

Sketch in the line BM; this is the perpendicular height of the trapezium. You can see this creates the rightangled triangle BMC.

You can use the angle relationships formed between parallel lines to find angle $M \hat{B} C$. $A \widehat{B} M$ and $B \bar{M} C$ are alternate angles, so are equal. This leaves you with a right-angled triangle, with angle 53° adjacent to the side whose length you want to find. Use cos.

Exercise 15.3

For these questions, if you are not given a diagram, make sure that you draw a clear picture for yourself.

1. In the triangle below, $\mathrm{PQ}=56.6 \mathrm{~cm}, \mathrm{SR}=110 \mathrm{~cm}$ and $\mathrm{QPS}=45^{\circ}$.

Calculate:
(a) the length of PS
(b) the length of QS
(c) the size of angle QPRR.
2. Arif, Ben and Chanika are standing in the playground. Arif is standing at point A. Ben is standing 86 m directly north of Arif at point B. Chanika is standing 119 m due east of Arif.

Chanika looks at Arif and then turns through an angle of x degrees to walk towards Ben.
(a) Calculate the distance between Arif and Chanika.
(b) Determine the value of x.
3. $A B C D$ is the plan of a trapezoidal garden. Angles $B \hat{A} D$ and $A \hat{D} C$ are 56° and 45° respectively. Given that the length of $C D$ is 85 m , calculate the length of AB .

4. Luca and Sasha are playing on a rectangular playing field $A B C D$. The lengths of $A B$ and $B C$ are 150 m and 80 m respectively. They part, with Luca walking directly along AB and Sasha walking along the diagonal AC. Find the angle between their two routes.
5. David is standing at a point D on the bank of a river. Emma is standing directly opposite David on the other bank at point E . Francis is standing at point F on the same bank as Emma but 70 m downstream along a straight stretch of the river. The angle between DE and DF is 28°. What is the width of the river between David and Emma?

The sine rule has three ratios but you only need two for each calculation. To make sure that you have the correct pairs, look for one ratio that has two known values and one ratio containing the side or angle that you are looking for.

In the example below, there is one known and one unknown quantity in each ratio, so you cannot use the sine rule.

$$
\frac{129}{\sin A}=\frac{150}{\sin B}=\frac{c}{\sin 28^{\circ}}
$$

If you fill in the known values and cannot find a complete ratio that you can use for the calculation, use the cosine rule (see section 15.5).

continued...

This is called the 'ambiguous case'. It only occurs when you are using the sine rule and have to find an angle larger than the one given. As the second angle can have two different values, the triangle can have two different shapes. The ambiguous case will not be examined.

If $a>b$ then angle $\mathrm{A}>$ angle B . In this example, you are using the sine rule but have been given the size of an angle that is smaller than the angle you are trying to find, i.e. $a<b$. This has an interesting result, as you will see at the end.

The triangle $A B C$ shows the angle B as an acute angle (and this is what the calculation has produced). But if you draw the sine curve on your GDC, you will see that there are two alternative values of x for which $\sin x=0.9694 ;$ these are $x=75.8^{\circ}$ and $x=104.2^{\circ}$.

If you draw the diagram accurately, with the line $A B$ at an angle of 59° to the line $A C$ at A, then place your compass point at C and set it to 8.4 cm , you will find that it cuts the line $A B$ in two places, hence the two possible solutions.
Q. Find the size of angle $A \hat{B} C$.

$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$\frac{\sin 59^{\circ}}{8.4}=\frac{\sin B}{9.5}=\frac{\sin C}{c}$
$\frac{\sin 59^{\circ}}{8.4}=\frac{\sin B}{9.5}$
$\sin B=\frac{9.5 \times \sin 59^{\circ}}{8.4}=0.9694 \ldots$
$A \hat{B} C=75.8^{\circ}$

Triangle $A B C$ could have angles of:
$A=59^{\circ}, B=75.8^{\circ}$ and $C=45.2^{\circ}$
or
$A=59^{\circ}, B=104.2^{\circ}$ and $C=16.8^{\circ}$

Exercise 15.4

1. Some of the dimensions of triangle ABC are given in the table below. The notation corresponds to that used for the sine rule, with the angles labelled as A, B and C. The corresponding opposite sides are labelled as a, b and c. Calculate the value of the missing values, x in each case.

	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	A	B	C
(a)		137.3	210.3		31.7	x
(b)	x		39.1	44.5		50.7
(c)		x	138.3		10.9	30.6
(d)	140.1	103.1		x	20.5	
(e)	135.1		x	59.9		74.8
(f)	90	71.1		88.6	x	

2. Calculate the length of side BC in each of the following triangles:
(a)

(b)

(c)

3. Find the size of the shaded angle in each of the following triangles:
(a)

(b)

(c)

4. In each of the following triangles ABC you are given the lengths of $A B$ and $B C$. You are also given the size of $B \hat{A} C$. Find the size of $A \hat{C} B$ in each case.

	AB	BC	BÂC
(a)	78.1 cm	140 cm	108°
(b)	108 mm	130 mm	80°
(c)	51 m	65.2 m	62°
(d)	30 km	49.5 km	98°
(e)	42.72 cm	45.28 cm	83.5°

hint

'Subtends an angle of 128° ' means that the angle between $A B$ and $A C$ or the angle the chord makes at the centre of the circle is 128°.
6. A chord subtends an angle of 128° at the centre of a circle. Given that the length of the chord is 22 cm , find the radius of the circle.

7. From the balcony on the 6th floor of a building, the angle of depression of the top of a tree is 38°. From the balcony on the 12 th floor the angle of depression increases to 64°. Given that the distance between the two balconies is 18 m , find the distance between the 12th floor balcony and the top of the tree.

15.5 The cosine rule

If a problem gives you values for:
two sides and the angle between them,

or three sides and no angle,

then you cannot use the sine rule, because you will not be able to fill in a complete ratio with values that you know.

Instead, you can use the cosine rule:

hint

Look for the pattern in all three formulae, and you will find it easy to remember them.

We have a known angle between two known lengths, so use the cosine rule.

Remember to use the square root key $(\sqrt{ })$ to find b.

Worked example 15.10
Q. Find the length AC .

A. $b^{2}=a^{2}+c^{2}-2 a c \cos B$
$=21^{2}+27^{2}-2 \times 21 \times 27 \cos 108^{\circ}$
$=1520.425 \ldots$
$b=\sqrt{1520.425}$
$b=39.0 \mathrm{~cm}$

Find the size of angle A.

A.
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ $\cos A=\frac{9^{2}+6^{2}-8^{2}}{2 \times 9 \times 6}$
$\cos A=0.4907 \ldots$
$A=60.6^{\circ}$

Summary

This flow chart can help you to choose the correct trigonometric rule for any given problem.

Exercise 15.5

1. Find the length of the side opposite the given angle in each of the following triangles:
(a)

(b)

(c)

2. Calculate the size of the shaded angle in each of the following triangles:

(b)

(c)

3. Use the cosine rule to find the lengths of all missing sides and the sizes of all missing angles in the following triangles:
(a)

(b)

(c)

For an explanation about angles relative to 'North', see Learning links 15 A on page 460.
(d)

4. Three houses P, Q and R are located in the same neighbourhood. The distance of P from Q is 270 m and the distance of R from Q is 236 m . The angle PQR is 111°. Find the distance between P and R.
5. Two ships are approaching the same port. Ship A is 27 km away from the port and its path makes an angle of 144° from North. Ship B is 19 km away from the port and its path makes an angle of 227° from North. Find the distance between the two ships.

15.6 Area of a triangle

It is also possible to find the area of a triangle without first having to work out the height of the triangle.

We know that area of a triangle $=\frac{1}{2}$ base $(b) \times$ height (h).

But, using triangle $\mathrm{BDC}, \sin \mathrm{C}=\frac{h}{a}$ and so $h=a \times \sin \mathrm{C}$,
This formula always uses two sides and the angle that is between them. This angle is known as an included angle. so the formula can be re-written as: area $=\frac{1}{2} b \times a \times \sin C$.

The perpendicular height of the triangle is not given, but we do have two lengths and an included angle so use the formula $\frac{1}{2} a b \sin c$.

Q.	Worked example 15.12
A.	Area $=\frac{1}{2} a b \sin C$ Area $=\frac{1}{2} \times 7.8 \times 12.5 \times \sin 74^{\circ}$ Area $=46.9 \mathrm{~cm}^{2}$ 7.8 cm

$A B$ and $A C$ are radii of the circle, so we know they are both 5 cm long. BAC is the included angle between $A B$ and $A C$, so we can use the formula Area $=\frac{1}{2} a b \sin c$ to calculate the value of $B A C$.

Exercise 15.6

1. Calculate the area of the following triangles:
(a)

(b)

(c)

(d)

(e)

15.7 Constructing labelled diagrams

Practical problems are often expressed in words, which means you should sketch your own diagram and work out which formula you need to use.

When you draw the diagram for a problem, it is important that you:

- read the question more than once, and make sure that you understand it
- draw the diagram large enough; don't try to fit all the information into one small rough sketch
- draw the diagram in pencil; you may need to start again, change it or erase something
- label the diagram clearly and include all the information
- add any extra lines or angles that you are asked to find.

Practical problems set in the examinations are likely to use more than one of the triangle formulae. For every solution it is important to make sure that you have all the information written on your diagram so that you can make the correct decision about which formula to use.

hint

For an explanation about angles 'from North', see Learning links 15A on the next page.

Worked example 15.15

Sketch the diagram, making sure that you include all the information given in the question. You need to calculate the length of AD.

Calculate angle ACD using the angle relationship 'angles around a point add up to 360° The North line is perpendicular to the line AC, so makes an angle of 90°.

You now know the length of two sides and the size of their included angle, so you can use the cosine rule.

You can calculate angle AD̂C, using the sine rule.

If we label the North line at D with the letter F, we create the angle CDF. The line CD is a transversal to two parallel lines (the two North lines) so we use the angle relationship 'co-interior angles add up to 180° to calculate BMC.

A small plane flies due west for 15 km , then turns through an angle of 148° anticlockwise from North and flies another 25 km .
(a) How far is the plane from its starting point?
(b) On the return journey, the plane flies on a straight path, direct to the starting point. What angle does its return flight make with the North line?
(a)

$$
A \hat{C} D=360-148-90=122^{\circ}
$$

$A D^{2}=15^{2}+25^{2}-2 \times 15 \times 25 \times \cos 122^{\circ}$
$A D=35.3 \mathrm{~km}$
(b)

$A \hat{D} C=21.1^{\circ}$
Angle $=180^{\circ}-148^{\circ}=32^{\circ}$
So, angle $F \hat{D} A=32+21.1=53.1^{\circ}$
The return flight makes an angle of 53.1° with the North line.

Exercise 15.7

1. ABCD is the plan of a school playground. It has two sections - a paved area and a grassed section.

(a) Calculate the length of the boundary line between the two sections of the playground.
(b) Find the area of the paved section.
(c) Calculate the area of the grassed section.
(d) Find the perimeter of the playground.
2. When Amanda first sighted a plane at point A the angle of elevation was 53°. After flying a further 1600 m to point B the angle of elevation reduced to 32°. Calculate the distance between Amanda and the plane at point B .

3. A lighthouse stands on a cliff. The angle of elevation of the bottom B of the lighthouse tower from a yacht is 46°. From the same yacht the angle of elevation of the top T of the lighthouse is 58°. Given that the height of the lighthouse is 35 metres, find the height of the cliff above sea level.
4. Three cities A, B and C form a triangle. The distances between the cities, $A B, B C$ and $A C$, are $186.1 \mathrm{~km}, 208.6 \mathrm{~km}$ and 314 km respectively. Sketch a diagram to represent the above information and hence find the sizes of the three angles of the triangle.
5. Two towns, Silvagrad and Tinburgh, are 208 km apart. Tinburgh is located due east of Silvagrad. A third town, Westown, is located north-east of Tinburgh and 150 km away from Tinburgh. Find the distance of Westown from Silvagrad.
6. John is at the lighthouse. He sights a ship 15 km away at an angle of 41° east from North. At the same time he sights a boat 6 km away, at an angle of 36° east from South. How far away are the boat and the ship from each other?

hint

' 36° east from South' would be:

In other words, it is 36° to the right (east) of the 'South' direction.

Summary

You should know:

- what the three different trigonometric ratios in right-angled triangles are:
- $\sin (\mathrm{e}) \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
- $\cos ($ ine $) \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$-\tan ($ gent $) \theta=\frac{\text { opposite }}{\text { adjacent }}$
- that the trigonometric ratios can be used to find the length of unknown sides and the size of unknown angles in right-angled triangles
- the definition of angles of elevation and depression
- that when a triangle is not right-angled, different trigonometric ratios are needed:
- sine rule, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ to find the length of a side or $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ to find the size of an angle
- the cosine rule,
$a^{2}+b^{2}+c^{2}-2 b c \cos \mathrm{~A}$
$b^{2}=a^{2}+c^{2}-2 a c \cos \mathrm{~B}$
$c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C}$
$\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ to find the size of an angle - this is useful when you have an included angle.
- the formula for the area of a triangle, when you do not know the perpendicular height, $A=\frac{1}{2} a b \sin \mathrm{C}$
- how to construct labelled diagrams from verbal statements.

Mixed examination practice

Exam-style questions

1. Kitty and Betty are standing on the same side of a radio mast. The angle of elevation of the top of the mast from Kitty is 32°. From Betty's position the angle of elevation of the top of the mast is 43°. Given that the height of the mast is 198 m , find the distance between Kitty and Betty.
2. The horizontal distance between two buildings is 200 m . From the top of the taller building the angle of depression of the top of the shorter building is 28°. From the same point on the taller building the angle of depression of the bottom of the shorter building is 42°. Calculate the heights of both buildings.
3. Yuri and Yuko are trekking in the forest. They both set off due east. After walking a distance of 2000 m Yuri changes direction and heads due south for another 700 m and stops. Yuko continues to walk another 1000 m due east before she changes direction. She then walks due north for another 1600 m and stops.
(a) Calculate the distance between the two girls.
(b) Through what angle must Yuri turn in order to walk directly towards Yuko?
4. A motorcyclist is riding on a straight road towards a tower. From point A on the road, the angle of elevation of the top of the tower is 25°. After he has travelled a further 80 m towards the tower, the angle of elevation of the top of the tower increases to 40°. Find the distance between point A and the top of the tower.
5. A police helicopter departs from the police station, flying on a path 330° clockwise from North. After flying for 1600 m , it receives a message to divert to a crime scene. It then changes direction to fly to the crime scene and its new path is 260° clockwise from North. The crime scene is 1800 m in a diagonal straight line from the police station. The helicopter's route is illustrated below.

Calculate the size of angle RŜP.
6. Three friends, Pat, Queenie and Rahina, are picking wildflowers in a field. Pat is 56 m away from Queenie. Queenie (Q) is 83 m from Rahina (R) and Rahina is 102 m away from Pat (P).

Given that the angle between PQ and North at P is 51°, calculate the value of the reflex angle between RQ and the North direction at R.
7. Jo has been offered a triangular shaped allotment. Two sides measure 9 m and 12.3 m . If the size of the included angle is 120°, calculate the area of the allotment.

8. Mr Bonsu has a piece of farmland which he wants to sell. The land is in the shape of a quadrilateral ABCD . Three sides of the land, AB, AD and CD, have lengths $55 \mathrm{~m}, 155 \mathrm{~m}$ and 180 m respectively. Mr Bonsu wants to estimate the perimeter and the area of the farmland.

(a) Calculate the length of BD.
(b) Work out the magnitude of angle $\hat{C B D}$.
(c) Calculate the length of side BC and hence the perimeter of the farmland.
(d) Work out the area of the farmland.
9. A and B are two points on a level ground. They are located on opposite sides of a tall tree. From point A, the angle of elevation of the top of the tree is 20°. From point B, the angle of elevation of the top of the tree is 30°. The distance between the two points is 70 metres.

Calculate the height of the tree.
10. Three friends Darya, Maiya and Zeena are standing at three different positions on level ground. Maiya is standing 50 metres due east of Darya. Zeena is standing 30 metres due north of Darya. Maiya and Zeena are standing at two different positions along a straight river bank.

Darya decides to walk towards the river bank, taking the shortest route.
How far will Darya have to walk to get to the river?

Past paper questions

1. Points $\mathrm{P}(0,-4)$ and $\mathrm{Q}(0,16)$ are shown on the diagram.

(a) Plot the point $\mathrm{R}(11,16)$.
(b) Calculate angle QPR.
M is a point on the line PR. M is 9 units from P.
(c) Calculate the area of triangle PQM.
[Total 6 marks]
[May 2006, Paper 1, TZ0, Question 6] (© IB Organization 2006)
2. Triangle $A B C$ is drawn such that angle $A B C$ is 90°, angle $A C B$ is 60° and $A B$ is 7.3 cm .
(a) (i) Sketch a diagram to illustrate this information. Label the points A, B, C.

Show the angles $90^{\circ}, 60^{\circ}$ and the length 7.3 cm on your diagram.
(ii) Find the length of BC .

Point D is on the straight line AC extended and is such that angle CDB is 20°.
(b) (i) Show the point D and the angle 20° on your diagram.
(ii) Find the size of angle CBD.
3. An old tower (BT) leans at 10° away from the vertical (represented by line TG).

The base of the tower is at B so that $\mathrm{MBT}=100^{\circ}$.
Leonardo stands at L on flat ground 120 m away from B in the direction of the lean.
He measures the angle between the ground and the top of the tower T to be $\hat{\mathrm{LL} T}=26.5^{\circ}$.

(a) (i) Find the value of angle BT̂L.
(ii) Use triangle BTL to calculate the sloping distance BT from the base, B to the top, T of the tower.
(b) Calculate the vertical height TG of the top of the tower.
(c) Leonardo now walks to point M, a distance 200 m from B on the opposite side of the tower. Calculate the distance from M to the top of the tower at T .
[May 2007, Paper 2, TZ0, Question 2(ii)] (© IB Organization 2007)

Chapter 16 Geometry of threedimensional solids

Plato (429-347 BCE) is generally considered to have been a philosopher, but he also gave his name to the group of regular solids called the Platonic solids. These are three-dimensional shapes whose flat faces are regular polygons. In ancient Greece, science, mathematics and philosophy were not separate disciplines; it was considered the mark of an educated person that they were interested in all branches of knowledge.

The five Platonic solids are:
tetrahedron

cube

octahedron

dodecahedron
icosahedron

-

In Mathematics, the word 'solid' is used to describe any threedimensional shape. A mathematical solid can even be hollow!

There are other solids that are not Platonic. These solids have faces of different shapes within the same solid. For example, a square-based pyramid has a square face as the base and the other four faces are triangles.

In this chapter you will learn:

- about the geometry of the following three-dimensional solids: cuboid, right prism, right pyramid, cylinder, sphere, hemisphere, cone and combinations of these solids
- how to calculate the distance between two points within a solid, such as the distance between two vertices, between a vertex and a midpoint, or between different midpoints
- how to calculate the size of an angle between two lines or between a line and a plane
- how to calculate the volume and surface areas of the three-dimensional solids defined above.

cube

cuboid

pyramid

triangular prism

Some solids have curved edges, or a mix of curved and straight edges:

sphere

hemisphere

cylinder

cone

Some solids are called prisms. A prism is a solid object that has two congruent ends and the cross-section is the same shape and area along its whole length.

cylinder

cuboid

prism with a polygon as its base

The word 'right' is used to describe some solids in which the 'height' makes a right angle with the base.

A right pyramid has its apex directly above the centre of its base.

A right prism has its base directly below its top surface, and the height makes a right angle with the base.
16.1 Finding the length of a line within a three-dimensional solid

Trigonometry and Pythagoras' theorem can be used to solve problems that require you to find the lengths of lines within a solid. These lines may be inside or outside the shape. It can be helpful to think of the solid as being hollow, or to make a model so that you can move it around and understand it better.

In order to do the calculations involved in this sort of problem, you will need to find the triangles within the shape. This is easier to do if you draw these 'calculation' triangles outside the main diagram.

pyramid

'calculation' triangle

You learned how to use trigonometry to solve problems in Chapter 15.

In examinations all questions on solids will be set so that you can answer them using right-angled triangles.

These familiar shapes all contain unexpected right-angled triangles.

Cuboid

Triangular prism

G is the midpoint of AC .

Triangle EAD is right-angled.

So is triangle FGD.

Triangle GBE is right-angled.

So is triangle CFE.

Worked example 16.2

Q. EABCD is a square-based right pyramid, with sides of 12 cm . The height of the pyramid is 9.5 cm .
(a) Calculate the length of EC.

A point, M, is marked half way along one side of the base.
(b) Calculate the length of EM.
(c) Why is the length of EC not the same as EM?
A.
(a)

(b)

$C D=A D=A B=B C=12 \mathrm{~cm}$
$\mathrm{EF}=9.5 \mathrm{~cm}$.
F is the midpoint of $A C$.

$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=12^{2}+12^{2}$
$A C^{2}=144+144=288$
$A C=\sqrt{288}=16.97 \ldots$
$F C=\frac{1}{2} \times A C$
$\mathrm{FC}=8.49 \mathrm{~cm}$
$E C^{2}=E F^{2}+F C^{2}$
$E C^{2}=9.5^{2}+8.49^{2}=162.25$
$E C=12.7 \mathrm{~cm}$

Add M to the diagram and draw another helpful triangle.

Remember that the radius of a circle is the distance from the centre of the circle to the circumference. It is also half of the diameter.

Sketch the right-angled triangle BDC. Use trigonometry to find the length r. You have the opposite and the hypotenuse, so use sin.

Exercise 16.1

1. VAOB is a right circular cone with radius 20 cm and slant height 60 cm .

Calculate the vertical height, VO.

2. ABCDEFGH is a cuboid with dimensions 4 m by 2.5 m by 2.8 m .
(a) Calculate the length of BD .
(b) Find the length of the diagonal BE.

3. What is the longest rod that will fit inside a box 20 cm long, 12 cm wide and 16 cm high?

A hemisphere is exactly half a sphere.
4. The diagram below shows a hemispherical bowl of radius 15 cm . Some liquid is poured into the bowl to a height of 8 cm with a circular surface of radius $B C$.
(a) State the length of AC.
(b) Write down the length AB .
(c) Hence find the length of BC.

5. VABCD is a right pyramid on a square base. VO is the vertical height of the pyramid.

The length of each side of the square base is 20 cm , and the slant height (VC) is 30 cm long.
(a) Calculate the length of AC.
(b) Calculate the vertical height of the pyramid, VO.

Remember that a cross-section is a vertical slice through the length of a solid; and an isosceles triangle has two sides of equal length and two angles of equal size. The angle sum of all triangles is 180°.
6. Liquid is poured into a spherical container to a height of $h \mathrm{~cm}$. The radius of the sphere is 22 cm . The top of the liquid is a circle of radius 10 cm .

Work out the height of the liquid, h.

7. The diagram shows farmer Neil's garden shed. The cross-section of the shed is a pentagon. BCD and IHG are isosceles triangles. $\mathrm{AB}=\mathrm{ED}=2 \mathrm{~m} . \mathrm{AE}=\mathrm{BD}=3 \mathrm{~m} . \mathrm{EF}=\mathrm{DG}=5 \mathrm{~m}$. The vertical height of both C and H above the ground is 4.5 m .
(a) Calculate the length of AF.

K is the midpoint of JF.
(b) Calculate the length of AK.

Farmer Neil fits two straight wooden poles, AH and AG, into his shed.
(c) Which of the two poles is longer and by how much?

16.2 Finding the size of an angle in a three-dimensional solid

Finding angles in three dimensions uses similar techniques to finding lengths. You will need to identify a right-angled triangle within the solid and mark in the angle that you have been asked to find. Again, it will be easier to do the calculations if you sketch extra diagrams.

Angle $A \hat{B} C$ is the angle between the base of the cone and its slant edge, AB .

Angle AĈB is the angle between the height of the pyramid and the edge CA.

Angle FÂC is the angle between the line AF and the base of the prism, ABCD.

The angle between a line and a plane (a flat surface) is shown in this diagram. It is the angle between the line AB and the line BC that lies on the plane. The perpendicular line has been drawn to create a right-angled triangle.

In every part of the question, the rightangled triangle has been identified and then sketched as a separate diagram. Make sure that you have copied all the letters from the threedimensional diagram onto your new diagram correctly. Once you have done this, complete your calculations using Pythagoras' theorem or trigonometry.

This is the base of the solid.

The length of the stick is given by the line $A B$.

You now know all three sides of the triangle $A B C$, so you can use any trigonometric ratio to work out the angle $A \hat{B} C$.

It is more accurate to use the original measurements though.

A.
(a)

(b)

$$
\begin{aligned}
\tan A \hat{B} C & =\frac{11.6}{15.8} \\
A \hat{B} C & =36.3^{\circ}
\end{aligned}
$$

If the radius of the cylinder is 5.8 cm , the diameter of the cylinder is 11.6 cm .

$$
\begin{aligned}
A B^{2} & =15.8^{2}+11.6^{2} \\
& =\sqrt{384.2} \\
A B & =19.6 \mathrm{~cm}
\end{aligned}
$$

Exercise 16.2

1. VAOB is a right circular cone with radius 20 cm and slant height 60 cm .
(a) What is the perpendicular height of the cone?
(b) Calculate angle AV̂B.

2. ABCDEFGH is a cuboid 12 cm long, 8 cm wide and 8 cm high.
(a) Calculate the length of DF .
(b) Find the length of the diagonal DG.
(c) Calculate angle GDF.

3. VABCD is a right pyramid on a square base. VO is the vertical height of the pyramid.

The length of each side of the square base is 26 cm , and the slant height (VC) is 38 cm .

Find the value of angle VÂC.
5. The diagram below shows a cylinder with radius 20 cm .

The height of the cylinder BD is 60 cm . C is the midpoint of BD .
Calculate the values of angles x and y.

6. VABCD is a right pyramid. The base of the pyramid is a square of side 10 cm . The slant height of the pyramid is 18 cm . E and F are the midpoints of AD and DC respectively.
(a) Calculate the length of:
(i) VE
(ii) EF.
(b) Work out the size of angle x.

7. ABCDEFGH is a cuboid of length 80 cm , width 50 cm and height $60 \mathrm{~cm} . \mathrm{M}$ is the midpoint of AB .
(a) Calculate the lengths of MF and ME.
(b) Work out the value of angle EMF.

8. ABCDEF is a triangular prism. M is the midpoint of AC .
$\mathrm{CD}=\mathrm{AF}=\mathrm{BE}=100 \mathrm{~cm}$,
$\mathrm{ED}=\mathrm{EF}=\mathrm{AB}=\mathrm{CB}=40 \mathrm{~cm}, \mathrm{FD}=\mathrm{AC}=30 \mathrm{~cm}$.
(a) Find the length of ME.
(b) Calculate angle MÊB.
(c) Calculate angle MDB.

16.3 Calculating volumes and surface areas of three-dimensional solids

The solid shapes in the table on the next page are important in architecture, in design, and in many other aspects of everyday life.

On the next page is a table listing some solids and the formula for calculating the volume and surface area. Not all of the formulae are in the Formula booklet, so make sure you know which ones you need to learn.

The geometry of the surface of a sphere is not the same as that of a flat plane. Are you sure that the angles of a triangle add up to 180° on every surface, curved or flat? Do you know why the flight maps in airline magazines use curved lines to illustrate the different routes between airports?

\mp	(${ }^{\text {P }}$		=
	\%		
	-	mos	\%
V	,		
	(1)	O	\%
-	\%asmeme	迷	
	O-5	(ㅈ)	边
)	\%		=
	${ }^{\text {ramm }}$	(4)	-
	©	mas	=
			-
		(2)	

To calculate the volume, you must first calculate the area of cross-section of the prism. This may also be called the area of the base of the prism.

In a regular polygon all the sides are the same length and all the angles are the same size. A regular hexagon consists of six equilateral triangles.

The surface area of the prism has two hexagonal ends and six rectangular sides.

(b) The prism is to be made of flexible plastic and sold as a pencil case. Calculate the area of material needed for each case.
(a)

hint

Remember that an equilateral triangle has all three sides the same length and all three internal angles the same size.

Use the formula $A=\frac{1}{2} a b \sin C$ to find the area of one
triangle.
Area of triangle $=\frac{1}{2} \times 3.5 \times 3.5 \times \sin 60^{\circ}=5.304 \ldots$
Area of hexagon $=6 \times 5.304 \ldots=31.8 \mathrm{~cm}^{2}$

Volume of prism $=19 \times 31.8=605 \mathrm{~cm}^{3}$
(b)

Area of one rectangle $=19 \times 3.5=66.5 \mathrm{~cm}^{2}$
Area of six rectangles $=6 \times 66.5=399 \mathrm{~cm}^{2}$
Area of the two hexagonal ends $=2 \times 31.8=63.6 \mathrm{~cm}^{2}$
Total area of plastic $=399+63.6=463 \mathrm{~cm}^{2}$

Using your GDC

For many of the problems you meet, your GDC will give answers to several decimal places. Even though the IB asks for all answers to be given to three significant figures, do not round your answers too early. Problems like the ones encountered in this chapter will require several

stages of calculation, and if you round the first answer and then use the rounded figures, you will be building up inaccuracies as you continue to work. It is better to use the Ans/ANS key or store your first solution in one of the memories of the calculator. (See '22.2C The Ans/ANS key' and ' $22.2 D$ Using the GDC memory' on page 643 of the GDC chapter for a reminder of how to use these features if you need to.)

The screens below show the calculation to find the volume of a cylinder with a radius of 5.6 cm and a length of 15 cm .

The area of the base is found; then the Ans key is used to substitute the area into the formula to find the volume.

Then the solution is stored in memory A.
The final answer, to three significant figures, is $V=1480 \mathrm{~cm}^{3}$.

The diameter of the hemisphere is the same as the diameter of the cone.

Store 501.08... in memory A on your GDC.

continued...

To find the volume of the cone, you need to know its height; use Pythagoras' theorem to do so.

(b) $h^{2}=29^{2}-5.5^{2}$
$h=\sqrt{810.75}$
$h=28.5 \mathrm{~cm}$
Cone: volume $=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \times \pi \times 5.5^{2} \times 28.5$
$V=901.98 \ldots \mathrm{~cm}^{3}$
Hemisphere: volume $=\frac{2}{3} \pi r^{3}$
$V=\frac{2}{3} \times \pi \times 5.5^{3}$
$V=348.45 \ldots$
Total volume $=1250 \mathrm{~cm}^{3}$

Exercise 16.3

1. For each of the shapes in Exercise 16.1, questions 1-6, calculate:
(a) the total surface area
(b) the volume.

Give your answer to the nearest whole number. (Note: the solid in question 4 is an 'open' bowl so calculate the outside surface only.)
2. Calculate the volume of each of the following shapes, giving your answer to the nearest whole number:
(a) a sphere with radius of 20 cm
(b) a hemisphere with radius of 24 cm

(c) a cylinder of radius 32 cm and length 120 cm

(d) a cylinder of radius 25 cm and height 80 cm

(e) a composite shape consisting of a hemisphere of radius 40 cm and a right cylinder of the same radius. The cylinder has a height of 140 cm .

3. Work out the total surface area of each of the shapes in question 2 above, giving your answer to the nearest whole number.
4. Felix is designing a container for detergent. The container is to have a volume of one litre ($1000 \mathrm{~cm}^{3}$). He is considering two options:
(a) a spherical container of radius $r \mathrm{~cm}$
(b) a cubical container of length $x \mathrm{~cm}$.

Find the values of r and x.
5. A garden shed has a cross-section in the form of a pentagon ABCDE .
$\mathrm{AB}=\mathrm{ED}=2 \mathrm{~m} ; \mathrm{BC}=\mathrm{DC}=1.6 \mathrm{~m} ; \mathrm{AE}=\mathrm{BD}=2.3 \mathrm{~m}$.
(a) Calculate the volume of the shed.
(b) Work out the total surface area of the roof of the shed BDGIHC.

6. A pack of tennis balls contains 4 balls fitted into a cylindrical container. The radius of each of the balls is 3.2 cm .
(a) Find the dimensions of the container if all 4 balls just fit into the container.
(b) Calculate the volume of unoccupied space in the container.

Summary

You should know:

- about the basic geometry of the following three-dimensional solids: cuboid, right prism, right pyramid, cylinder, sphere, hemisphere, cone and combinations of these solids
- how to calculate the distance between two points within a solid, such as the distance between two vertices, from a vertex to a midpoint, or from midpoint to midpoint
- how to calculate the size of an angle between two lines or between a line and a plane
- how to calculate the volume and surface area of the three-dimensional solids defined above.

Mixed examination practice

Exam-style questions

1. A cube $A B C D E F G H$ has sides of length 8 cm .
(a) Calculate the length of the diagonal AC.
(b) Work out the length of the diagonal AF.

2. $\operatorname{PQRSTUVW}$ is a cuboid of length 200 cm , width 70 cm and height 90 cm .
(a) Find the value of angle RPT.
(b) Calculate angle TQ̂S.

3. The diagram shows a cylindrical barrel of radius 1.2 metres and height 3.6 metres. A tube DEO is fixed into the cylinder. The tube consists of two straight parts OE and ED. O is at the centre of the base of the barrel and E lies along BC such that $\mathrm{BE}=1.4$ metres.

Calculate the total length of the tube.

4. A composite shape consists of a hemisphere and a right cone, both of radius 28 cm . The height of the cone is 84 cm .
(a) Calculate the volume of the composite shape.
(b) Work out the total surface area of the shape.

5. The following diagram shows a spherical ball of radius 10 cm , which just fits into a cylindrical container.

Calculate the volume of unoccupied space in the cylindrical container.

6. Each of the following three containers has a volume of $8000 \mathrm{~cm}^{3}$.

Shape A

Shape B

Shape A is a cube of side 20 cm .
Shape B is a cylinder of diameter 20 cm .
Shape C is a right cone of diameter 20 cm .
Work out the heights of shapes B and C.
7. Loretta has moulded a sphere of radius 12 cm out of clay. Later she remoulds four smaller spheres out of the original, bigger sphere.
(a) Work out:
(i) the volume of the original sphere
(ii) the total surface area of the original sphere.
(b) Find the volume of each of the smaller spheres.
(c) Calculate the radius of the smaller sphere.
(d) Would the total surface area of the four smaller spheres be the same as the surface area of the original sphere? Justify your answer.

Past paper questions

1. Jenny has a circular cylinder with a lid. The cylinder has height 39 cm and diameter 65 mm .
(a) Calculate the volume of the cylinder in cm^{3}. Give your answer correct to two decimal places.
[3 marks]
The cylinder is used for storing tennis balls.
Each ball has a radius of 3.25 cm .
(b) Calculate how many balls Jenny can fit in the cylinder if it is filled to the top.
(c) (i) Jenny fills the cylinder with the number of balls found in part (b) and puts the lid on. Calculate the volume of air inside the cylinder in the spaces between the tennis balls.
(ii) Convert your answer to (c)(i) into cubic metres.
[Total 8 marks]
[May 2007, Paper 2, TZ0, Question 2(i)] (© IB Organization 2007)
2. The triangular faces of a square based pyramid, ABCDE , are all inclined at 70° to the base. The edges of the base ABCD are all 10 cm and M is the centre. G is the midpoint of CD .
(Diagram not to scale)
(a) Using the letters on the diagram draw a triangle showing the position of a 70° angle.
(b) Show that the height of the pyramid is 13.7 cm , to 3 significant figures.
[2 marks]
(c) Calculate:
(i) the length of EG
(ii) the size of angle DÊC.
(d) Find the total surface area of the pyramid.
[2 marks]
(e) Find the volume of the pyramid.
[Total 11 marks]
[May 2008, Paper 2, TZ1, Question 4(ii)] (© IB Organization 2008)
